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ABSTRACT OF THE THESIS 

ContextQA: Experiments in Interactive Restricted-Domain 
Question Answering 

by 
Martin Erik Liljenback 

Master of Science in Computer Science 
San Diego State University, 2007 

The need for more advanced data mining and search engine technologies has been 
steadily increasing since the introduction of the Internet. With the exponential growth of 
information available on the web combined with a public that is becoming more educated in 
search technology, there exists a great need to quickly and efficiently be able to provide 
results for a large range of very specific questions. The current natural language processing is 
still in a primitive state. There is no single solution that will be able to provide quality results 
to the broad range of potential questions by using indexed data extracted from the web. 
However there exist several ways to provide more efficient results. One way is to develop 
more extensive ways to interact with users to target results related to the individual’s specific 
needs. 

This thesis focuses on a particular field of research that is called Question Answering 
Systems. In Question Answering the system provide answers on plain text questions through 
natural language processing, information retrieval, and data mining on structured or 
unstructured text data. A summary of the research development in this area is provided and 
also a description of how the algorithms and techniques have evolved over time until we are 
left in the current state. 

Furthermore, I conclude that there are many compelling reasons to build more refined 
and targeted knowledge bases. With a targeted knowledgebase and knowledge about an 
individual specific needs, several algorithms can be applied which provides better results and 
efficiency than that of an open-domain question answering system. I show that index based 
search engines are far from providing the same level of accuracy as a restricted-domain QA 
systems. As part of the thesis a complete restricted-domain QA system is developed named 
ContextQA. A series of experiments are conducted where ContextQA is configured to use 
different approaches on restricted-domain question answering algorithms. The results show 
that high accuracy can be obtained within a restricted-domain with limited resources. 
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CHAPTER 1 

INTRODUCTION 

The history of question answering goes far beyond computer software systems. One 

of the most powerful ways to learn is by asking questions of someone that has an intimate 

knowledge in the field that you are interested in learning about. There is a period while 

growing up when we frequently ask our parents questions about everything in our 

surroundings so that we can build up knowledge about the world we live in. In many schools 

teachers now practice inquiry based learning.  This has many times proven itself to be a more 

powerful way to learn as indicated by Harlen (2004). Inquiry based learning is a different 

approach rather than older style teaching where students mostly listen and document what the 

teacher is saying. One reason why inquiry based learning has not previously been practiced 

that widely is because it requires a lot of interaction with individual students. With the 

introduction of the internet students can now practice inquiry based learning by using online 

resources. Question answering systems would provide a very powerful way to practice 

inquiry based learning. 

Computers most common task is to quickly process large amounts of information to 

solve different types of logical problems. Another way to word this is that we use computers 

to provide us with answers to problems that are considered too hard or time consuming for us 

to process by hand. We interact with computers through graphical and hardware user 

interfaces such as using a keyboard and a mouse to control a software application while 

reading results on a monitor. These types of interfaces have evolved to become rather 

sophisticated throughout the years, but they still do not compare to how we interact with 

other people while asking questions.  Question answering systems are a step in that direction. 

1.1 CHAPTER ORGANIZATION 

This section contains a brief summary on the contents of each chapter. These 

summaries give an overview on how the thesis document is organized. 
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1.1.1 Introduction 

In this chapter I describe what my goals are and what I plan to accomplish. The 

chapter gives a short description of Question Answering systems. Furthermore, I describe the 

need and value these systems provide to our community. In addition, this chapter includes an 

outline of the entire document. 

1.1.2 Background 

There is a comprehensive description on the history of question answering and how it 

has evolved since the inception of computers and computer networking. A roadmap of future 

work in this field is presented and discussed. The need of question answering systems is 

described throughout this chapter. This chapter holds some detailed information on how a 

generalized question answering system architecture can be constructed. The different sub-

systems in a question answering system are described. There is an in depth analysis of open-

domain question answering systems versus restricted-domain question answering. In this 

section I show some of the clear benefits of using restricted domain question answering 

systems. This chapter also contains a section describing the complexities of question 

answering and what makes it one of the hardest problems to solve. The chapter is completed 

with a section where I describe the potential market of question answering and that the 

reasons why companies keep on funding projects to develop question answering systems.  

1.1.3 System Design 

This chapter describes how I choose to tackle some of the problems so that I could 

obtain the goals I had set out to reach with this thesis. I list some of the previous work within 

restricted question answering and give an idea on what needs to be tackled next. 

1.1.4 Building a Targeted Knowledge Base 

In this chapter I cover the work I did when trying to automate the knowledge building 

phase by using open-domain resources in obtaining a restricted domain question answering 

knowledge base. By extracting QA-pairs from online frequently asked questions pages a 

knowledge base is constructed. The work refining this knowledge base is described in some 

detail and various metrics on the final knowledge repository are also provided. A novel 
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approach of extending an existing knowledge repository within question answering using 

translation to other languages is discussed and results are provided. 

1.1.5 ContextQA System 

The system design of the question answering system that I constructed for this thesis 

is described in this chapter. The framework, resources, and the way algorithms where 

implemented is covered. 

1.1.6 System Evaluations and Results 

This chapter provides results and findings from several different question answering 

algorithms that were run through a test collection within the ContextQA system. 

1.1.7 Future Enhancements 

In this chapter I write about topics that were not covered in my work but would serve 

as a natural continuation of it. I write about what I believe is the correct way of implementing 

an open-domain question answering system using the features and advantages you obtain 

within restricted domain question answering. 

1.2 CONTRIBUTIONS OF THIS THESIS 

The main objectives and contributions of this thesis are listed below:  

• Provide an overview on the past and present state of Question Answering and 
different approaches on how to solve the problem. 

• Discuss and show the benefits of an interactive restricted-domain Question 
Answering System. 

• Build a refined knowledge base that can be used as a resource for future research 
work on Question Answering at San Diego State University. 

• Research, design and implement a fully working restricted-domain Question 
Answering System. 

• Present the performance of different algorithms in a QA system implementation. 
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CHAPTER 2 

BACKGROUND 

This chapter describes the history of Question Answering. A common Question 

Answering architecture is presented. Open domains versus restricted domain question 

answering systems are described in depth.  

2.1 EARLY QUESTION ANSWERING UTILIZING 

NETWORKED COMPUTERS 

Providing answers to questions across networked computers was first introduced by 

the use of bulletin board systems (BBS). These types of systems were hosted on computers 

connected to the phone network. Bulletin board systems were popular during the 1970s and 

1980s especially in Europe. The servers hosting the bulletin boards used different methods 

and protocols to synchronize messages such as FidoNet (Bush, 1995). By utilizing these 

types of protocols messages entered on one server could be distributed to all the other servers 

that were part of the network. These servers were accessible through local phone numbers 

using modems as seen in Figure 2.1. By synchronizing servers questions got a lot more 

exposure than if only hosted on one single machine. The questions and knowledge exchange 

in these early networks were mostly computer science related. At the point when the internet 

started to become more widely adopted a similar system was developed named UseNet. 

UseNet was a set of news servers connected in a somewhat organized network. Today 

UseNet spans most of the globe and is still very actively utilized. The connected servers 

communicate using NNTP (Network News Transfer Protocol) (Kantor, & Lapsley, 1986). 

This system gained popularity very quickly after it was introduced. The amount of articles, 

questions and answers grew exponentially and today news servers are considered a major 

knowledge resource for almost any type of information. Various companies such as Google 

among others have realized that indexing this type of information can be a very powerful 

resource. The information available in these archives consists mostly of people submitting 

questions that other users get a chance to answer. 
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Figure 2.1. Networked computers sharing bulletin board systems. 

This way a user can perform keyword searches to quickly locate postings containing 

answers to common questions. Searching for answers for more specific questions this way 

usually takes some work by analyzing resulting articles. It also takes some practice knowing 

what keywords to use to get quality results. Answers to questions that are not that common 

are much harder to find using this method and the result will usually not guarantee a correct 

answer. Ideally a user would be presented with one single answer instead of a list of 

documents. The resulting relevant documents might not even contain the answer, or might 

contain false answers. When viewing logs from popular search engines approximately 15% 

of all queries posted are fully formulated questions. The following might be some examples 

of the type of questions people submit to search engines: 

• What are the top rated colleges in the UK? 

• How do I lose weight? 

• Where can I buy quality headsets? 

• How many kilograms are five pounds? 

• What does bilingual mean? 

In a related work, Radev, Libner, and Fan (2002) concludes that when posting 

complete questions to search engines correct answers are only found three fourths of the time 

within the first forty results returned. This shows that there is a great need to provide more 
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precise answers instead of a list of links to documents that potentially hold the answer. 

However, the quality of the results for plain text questions is likely to degrade even further if 

QA systems do not become an integral part of regular search engine technology any time 

soon. The reason for this is that it is usually better to type in several well thought out 

keywords that correspond to the question context. Plain text questions tend to generate poor 

results and are even discouraged by certain search engines.  

2.2 FREQUENTLY ASKED QUESTIONS 

One popular way of sharing inquiry based information on the internet is by listing 

frequently asked questions (FAQ) and their answers on web pages or in text documents. The 

FAQ originated as a text medium on ARPAnet mailing lists and later FAQs became available 

on UseNet in the form of "*.answers" moderated newsgroups. Many internet based 

organizations and corporations will first direct clients to read through a publicly available 

FAQ before being able to submit questions to support personnel. This limits the amount of 

redundant questions and reduces the resources spent on support personnel. 

A FAQ has several drawbacks when compared to an interactive QA system. If the 

FAQ is too small, the questions will most likely not cover enough of the topic. The positive 

aspect of this is that it becomes easier to quickly read through the FAQ to determine if the 

question is covered or not. A large FAQ on the other hand can be intimidating to read 

through and is not always guaranteed to provide the correct answer either. Sometimes larger 

FAQs will be covered on several documents. This can provide some structural advantages 

but makes it harder to search for specific keywords relating to a question. Another problem 

with a static FAQ is that there is no straightforward way for an administrator to find out what 

types of questions clients have. This can be solved by providing some sort of feedback such 

as email, but usually a client will want the question answered right away and will search 

elsewhere for an answer before submitting any feedback. If feedback were to be provided an 

administrator could theoretically refine the FAQ based on empirical knowledge on what 

types of questions are submitted the most. The FAQ is still today the most common way to 

provide answers to common questions online. However one of the greatest drawbacks with 

static FAQs is that the client is not given the option to ask free form questions but is forced to 

re-phrase the question so that it matches what might be available.  
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2.2.1 Expert Inquiry Systems 

Another common way to provide answers online is by having a staff of experts whose 

job it is to answer client’s questions. These types of systems are geared more towards 

knowledge bases covering specific topics. An example would be questions on how to invest 

your money or how to write programs for computers. Many of the leading search engine 

companies now provide experts that can answer or research more complex questions. This is 

another indication that the public many times searches for specific answers that cannot be 

found or are hard to find given the indexed content available through search engines. These 

services usually come with a small fee as can be seen on Google Answers. There also exist 

several free systems such as Expert Exchange where authors instead of charging for their 

services get awarded virtual points for answering questions. These free systems usually cover 

common topics and have a growing community of people giving free advice.  

2.2.2 Historical Limitations 

The systems described up until now are greatly limited by either their interface or 

their cost. They also require constant maintenance by people or have a limited number of 

statically defined questions and answers. The flexibility of these types of systems is therefore 

limited. When questions are submitted to a system that is maintained by people, one or more 

might answer or none at all. If an answer is provided, it will not be provided instantly. 

Usually it takes one or more days before an answer becomes available. In the systems 

described so far it is also tedious to find existing answers even if the question has previously 

been submitted and an answer already exists. The reason for this as stated previously is that 

there are so many different ways to formulate questions that lead to the same answer. An 

example of this is depicted in Figure 2.2. One good reason to create a system that can 

automatically answer questions is due to the massive amount of online information that is 

publicly accessible today. There is however no solid standard on how to organize this 

information or how to organize systems that are designed to provide answers to questions. 

The information available online is usually not organized very well which makes it hard to 

manually search for answers with specific contexts. In an automatic QA system manual 

searching is not required. All the complexity that is required to provide an answer is instead 
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implemented in the system layer. In a QA system the answer is (or at least should be) 

provided in real-time. 

 
Figure 2.2. Different questions leading to the same answer. 

A massive amount of resources has been spent and is actively being spent on research 

and development in this area. Designing an automated QA system is not in any way a novel 

idea, but it is not until recently that it has started to become more commercially feasible to 

do. One reason is the cheap storage and processing power that is now available. There has 

also been a lot of progress in developing parallel computing clusters using networked 

computers especially within the open source community. Some examples of systems like 

these are the NASA developed Beowulf design, and Sun Microsystems Inc.'s N1 Grid 

Engine. Any decent QA system tends to be resource intensive and can benefit from these 

types of algorithms. 

The government has historically contributed a large amount of resources trying to 

develop IR and QA related systems. One example of such a system is CYC (Lenat, 1995) 

which is an attempt to create a natural language processing system that can process and 

understand plain text documents such as the New York Times. CYC does this by creating 

ontologies which are basically context driven relationships between words in a sentence. This 

works to a certain degree and allows CYC to build a vast knowledge base of simple 

relationships and word meanings. These relationships are not much use when it comes to 

providing answers to more complex questions. More logical questions such as: is a dog a 
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cat? could be analyzed by using the knowledge base of CYC to be determined to be false. 

The knowledge base itself can be used as part of a QA system. Using CYC in a QA system 

has only recently been considered (Curtis, Matthews, & Baxter, 2005). This became possible 

when part of CYC was released under an open source license. CYC is a good example on 

how much work is required to just get a basic understanding of written or spoken language.  

Given lessons learned from previous approaches today’s QA systems mostly rely on 

hybrid solutions where shallow language understanding is used combined with some aspects 

of natural language processing. 

2.3 QUESTION ANSWERING SYSTEMS 

Question Answering Systems have evolved from the field of Information Retrieval. 

Information Retrieval traditionally takes as input a set of keywords that constitutes a query. 

The query is then processed by various algorithms. Usually the query is broken up by 

separating all the individual keywords which are then used to search for relevant documents. 

During the search the keywords will be matched up against an index that references the 

different documents. Many times a keyword query will not contain sufficient information to 

produce quality results. One reason can be due to the lack of keywords or the lack of 

descriptive keywords. This is a very likely scenario when clients type in the queries 

manually. These types of problems can be solved to a certain degree by applying query 

rewriting, or query expansion prior to searching. There are several different algorithms that 

are involved in this process such as finding keyword synonyms, and possibly apply stemming 

algorithms. Stemming was first introduced by Lovins (1968) and is used to obtain a word 

morphological root, thereby reducing the granularity of words that need to be indexed. 

Stemming is usually an integral part in any modern IR system. When a resulting set of 

documents has been retrieved these documents are sorted based on relevance and then 

presented to the user as seen in Figure 2.3. The most common ways of doing this is to use a 

Boolean Model or a Vector Model. The Boolean model suffers from the fact that it is binary 

and will blindly exclude documents whose index terms (keywords) do not qualify the 

Boolean expression. Let ti be index terms in the following Boolean expression: q = t1 − ( t2 / 

t3 ). For the query q to be true index term t1 is required, and either t2 or t3 needs to be present 

as index terms for the document. This works well when controlling exactly what document 
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subset is returned. Many search engines use the Boolean model. The main disadvantage of 

the Boolean model in IR and QA is that index terms can only be given Boolean weights 

i.e. }1,0{∈iw . This means that with too restrictive expressions no documents will qualify. On 

the other hand a very general expression will result in too many documents being returned. A 

more popular model that allows for non-binary weights is the vector space model (VSM). In 

this model the terms of the query are given weights and so are terms within documents. 

Ranking DatabaseSearching Index

Query 

Rewrite

User 

Interface

Documents

Query

(Keywords)

Refined Query

Text

Documents

Keyword Query

Documents

Ranked

Documents Indexing

Request

Document

 
Figure 2.3. Information retrieval system. 

These term weights are represented by two n-dimensional vectors, one vector d for 

the document, and one vector q for the query.  A document relevancy number can be 

calculated by taking the cosine angle between these two vectors. This is done by taking the 

vector dot product divided by the vector cross product. 
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The VSM can qualify documents that are only similar to a certain degree to the query. 

The amount of documents retrieved can be adjusted by setting a cut-off value to the 
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relevance score. The term weights can be calculated in many different ways. One of the more 

popular ways is the tf-idf (term-frequency and inverse document frequency) weighting 

scheme developed by Salton and Buckley (1988). The term frequency tf of a term ti is 

determined by dividing the frequency of the term in a document by the frequency of all terms 

in that document. 
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The inverse document frequency idf is obtained by dividing the total number of 

documents with the number of documents containing the term. Finally the tf-idf weight is 

calculated by taking the term frequency times the inverse document frequency. The tf-idf 

weighing scheme has received a lot of attention in the IR research community, and is one of 

the more popular models. 

The main problem with information retrieval is that when provided with the resulting 

full text documents finding the requested answer can many times be difficult. An information 

retrieval system does not inform (i.e. change the knowledge of) the user on the subject of his 

inquiry. It merely informs on the existence (or non-existence) and whereabouts of documents 

relating to his request (Lancaster, 1968). To simplify this analysis, a system that can perform 

Information Extraction (IE) to extract specific content data from resulting documents would 

be needed. That way a user could more quickly determine whether the information is 

available or not. Providing this feature is one step closer to Question Answering.  

The task of a Question Answering System is when given a plain text question to 

extract information from its knowledge base and serve up an intelligent answer back to the 

client. A simple keyword query in Information Retrieval is trivial when compared to being 

able to understand a question written in natural language. Many have said that Question 

Answering is in fact the holy grail of Information Retrieval. The scientific reason for 

Question Answering is that the ability to provide an intelligent answer given a structured or 

unstructured source of information can be considered the essence of understanding. 
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2.3.1 Generalized Question Answering Architecture 

Sometimes when asked a question it can be difficult to give an answer even when 

possessing the knowledge required. Programming a machine to answer questions becomes 

much more difficult. However several approaches on how to design such a system have been 

suggested and implemented. In this section the general architecture of a Question Answering 

System is presented, and all the different parts are explained. Each section directly refers to 

the different parts depicted in Figure 2.4. 

 

 
Figure 2.4. Generalized question answering architecture. 

2.3.1.1 USER INTERFACE 

Most question answering systems that have recently been implemented provide the 

user with a web based form where questions can be entered. The question is then submitted 

and the system interprets the question and responds by returning a formatted answer similar 

to what you would expect from a person. The user interface could also be constructed by a 

speech recognition and speech synthesis interface. The user interface is an important part of a 

QA system but not that much research has been devoted to it as of yet. Many interfaces 

mirror the look and feel of a search engine such that not only the answer is presented but also 

other answers that received a high confidence score. Future QA interfaces will most likely 
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blend transparently into our everyday life such as telephone support, household products, and 

car navigation systems. 

2.3.1.2 QUESTION ANALYZER 

The question analyzer plays an important role in any type of question answering 

system. In this module the question is analyzed and processed to extract as much information 

as possible that can be used later in the data retrieval phase. Different implementations will 

differ in the depth of analysis at this step. For example such analysis may involve breaking 

up the words in the question and using everything but the stop words in the search compared 

to complete syntactic parsing of the sentence. Stop words are words that will not increase the 

performance in the retrieval phase. These stop words can be words such as is, are, he, which, 

etc. In open-domain systems the question is commonly rephrased into what is thought to be 

part of the answer.  

• Where is the Eiffel tower located? (original question) 

• the Eiffel tower is located  (part of answer) 

• the Eiffel tower is close to (part of answer) 

• the Eiffel tower can be found in (part of answer) 

That way several parts of the possible answer are used when searching through the 

document collection. Query expansion is another way to increase the chances of finding a 

document containing the answer. Question terms can be expanded into several terms using 

synonyms. Other features about the question can also be extracted such as the question type. 

2.3.1.3 DATA RETRIEVAL 

Some of the information that has been extracted in the question analyzer will be 

utilized to query the knowledge base for information. This can be done in several different 

ways. An open-domain QA system would use either a custom search engine or a third party 

search engine to search documents distributed over the internet. A closed-domain system can 

search unstructured, semi-structured, or structured data sources such as a database. Within 

this part of the system other pre-processed information is many times used to improve 

performance. These types of resources can be anything from a comprehensive index to pre-

processed parts of the document collection. The data-retrieval part of a QA system is many 
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times similar to the data-retrieval that is done in an IR system which would utilize methods 

such as Boolean keyword search or term weighing. In the data-retrieval phase of a QA 

system it is important to retrieve as much relevant information as possible. The quality is less 

important because the result will not necessarily be presented to the user. What is more 

important is that the information asked for be found. That means that if the system has 

enough performance to process the information the larger amount of information the better. 

2.3.1.4 ANSWER EXTRACTION 

Answer extraction falls under IE (Information Extraction). In this part of the QA 

system the information has been retrieved. The information can be either documents or text 

resulting from a database query. This information is used to extract passages that relate to the 

question asked. At this part QA systems really start to deviate. Some systems will consider a 

passage containing the answer a valid response. Other systems will try to create a properly 

worded answer. An open-domain system can differ from a closed-domain system in this step 

where an open-domain system will always have a set of documents at this stage or a set of 

passage summaries as result of a search engine query. The most basic way to generate an 

answer is to extract parts or chunks of the information that relate most closely to the 

question. These chunks can then be put together to form an answer or several answers. There 

are many different ways IE algorithms rate what passages to extract (Tellex, Katz, Lin, 

Fernandes, & Marton, 2003). 

2.3.1.5 RANKING 

If the answer extraction results in more than one answer these answers are ranked 

based on relevance. Again, there are many different approaches on how to properly weight 

the answers and this is closely connected to how the answer is extracted from the information 

processed in the answer extraction phase. 

2.3.1.6 ANSWER VERIFICATION 

Some more advanced systems will further improve the accuracy by analyzing the 

resulting answer using deeper NLP methods to justify it against the question. The question 

and answer are parsed and converted to their logical forms. The question and answer are then 

compared by trying to logically prove the correctness of the answer by using methods such as 
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abductive justification. This is done by using information and facts contained within the 

documents, world knowledge which is many times extracted from WordNet, and domain 

specific ontologies.  

2.3.2 History of Question Answering 

Designing a Question Answering system is no novel concept. Several systems have 

been produced since the 1960’s. The first systems were restricted-domain QA systems that 

interfaced against databases. One example of such a system is BASEBALL developed 1961 

by Green, Chomsky, and Laughery (1961). This system was designed to provide factoid type 

information about the American baseball league statistics. This was done by using shallow 

language parsing techniques. Another system similar to BASEBALL was developed by 

Woods (1973) and was named LUNAR. LUNAR was able to answer questions regarding the 

rock samples returned from the Apollo lunar exploration. Wood system translated the 

questions to one or more database queries. The TEAM system developed by Grosz (1983) 

had some basic features such as semantic representation routines, and a schema translator 

that made it more modular than the previous two systems. The similarities between all three 

systems are that they were all using databases to store their knowledge base. The design of 

these databases and the structured data they contained was all created manually by experts in 

their respective fields. Having a very structured knowledge base made the systems perform 

very well against their targeted domain of expertise. Any questions relating to topics outside 

the targeted domain would generate poor results. 

Dialog systems started to appear around the 1960s. These systems were mostly 

influenced by the test suggested by Alan Turing which he called “Imitation Game” (Turing, 

1950). The theory behind the test was that a machine is to be considered intelligent if a 

person communicating with the machine via teletype could not distinguish it from a real 

person. Conversational systems such as Joseph Weizenbaum’s ELIZA (1966), and the 

“Conversation Machine” (Green, Berkley, & Gotlieb, 1959) were the first systems that could 

be verified against a Turing Test. These systems were designed to provide ways to carry on a 

basic conversation by recognizing certain word patterns. The result could be quite convincing 

but even a novice user could quite quickly find flaws. In 1991 Hugh Loebner started the 

Loebner Prize Competition, offering a $100,000 prize to the author of the first computer 
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program to pass an unrestricted Turing Test. This has not yet been accomplished, but several 

comprehensive rule based systems have been competing each year. 

Using natural language processing for story comprehension received a lot of focus 

during the 1970s. One system like this was MARGIE (Schank, Goldman, Riesbeck, & 

Rieger, 1975). This system was able to process documents which it later could answer basic 

questions about. This was done by parsing and organizing the document’s information in a 

similar pattern as human memory is thought to work. This was further improved by Lenhert, 

Dyer, Johnson, Yang, and Harley (1983) in the BORIS system. BORIS explored story 

comprehension by introducing elements such as emotions and themes. BORIS and MARGIE 

are systems that more closely mirror the way open-domain question answering system work 

today. The likelihood comes from the way the systems are designed to extract and process 

information from unstructured text. 

During the 1980s Natural Language systems that interfaced against databases started 

to get a higher commercial adoption rate. Among the companies that started to offer these 

types of solutions were EasyAsk who now back enterprise customers such as Forbes, BASF, 

and FedEx with certain QA solutions.  

Some of the first web-based QA systems appeared during the 1990s. MIT’s START, 

appeared in 1993, (Katz, 1997). START used annotation to break up sentences in something 

called a ternary expression <subject relation object>. These ternary expressions were later 

used to more efficiently issue queries against the system’s knowledge base. START was 

followed by Ask Jeeves in 1996. Ask Jeeves supports NL queries and is thought to mainly 

use query templates to match questions (Sneiders, 1999). 

The focus on Question Answering systems within the research community got a 

major boost during the last decade. This was due to a combination of things such as large 

amounts of indexed documents becoming available with the introduction of the internet. Also 

advances within Information Extraction, and more commercial interests for QA solutions 

caused the field of Question Answering to get more attention. Other things that have made it 

easier to develop more complex QA systems are resources such as WordNet (Fellbaum, 

1998), and OpenCyc (Curtis, Matthews, & Baxter, 2005). WordNet provides access to 

semantic information, and semantic relationships. CYC provides access to ontology 



 

 

17

information and everyday common sense knowledge. Both these systems have now been 

made freely available to the public. 

The U.S. government’s Text Retrieval and Evaluation Conference (TREC) Question 

Answering track (Voorhees, 1999) also made a big contribution. The question answering 

track was initiated at TREC-8 in 1999 with 20 participants. The Question Answering track is 

a competition to evaluate systems of question answering in open-domains. This event 

enabled researchers to start sharing their experiences, and also compare their results using 

common metrics. Every year the TREC competition has gotten more comprehensive in its 

QA tasks. In the first QA track the participants were required to return a 50 to 100 character 

long string as a response to a question. This string did not need to be formulated correctly but 

was supposed to hold the answer to the question. Most of the questions lead to short factual 

answers such as the name of a person or a date. These types of questions are called factoid 

questions. Since then another question category has been introduced when a question can 

produce several answers. An example of a list question could be, “Name three car 

manufacturers”. Aggregating a list of answers makes the task a lot more complicated because 

the list of answers often needs to be extracted from several different documents. Throughout 

the last question answering tracks Language Computer Corporation (LCC) has been the best 

performing team by far, averaging close to 70% accuracy on factoid type questions. In the 

2004 competition the team  in fourth place had 34.3% accuracy (Voorhees, 2004). That score 

is less than half of what LCC got, and shows that the average QA system performance is still 

quite low. For the list questions the top ten teams in the 2004 competition had an average 

accuracy of 24%. 

In the last TREC QA competitions the approaches used by different teams can be 

summarized as statistical, rule-based, and mixed. Most advanced Question Answering 

systems are starting to become exceedingly complex, often using several different modules 

such as information retrieval, sentence parsing, pinpointing question-types, semantic 

analysis, and even reasoning (Moldovan et al., 2002) to evaluate, and rank answer 

candidates. With the increased complexity of QA systems it many times becomes harder to 

pinpoint where the increased performance comes from. 
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2.3.3 Question Answering Roadmap 

Given the success of the TREC competition a committee was put together by some of 

the key people involved in the competition to produce a roadmap for question answering. 

This roadmap was intended to cover many aspects of QA and what type of enhancements 

would be expected over the next years. The result was a roadmap document (Burger et al., 

2000) describing a vision of future QA. Questions range from simple facts to complex 

scenarios such as producing answers based on the context of a discussion. The committee 

determined that users of a QA system would want the following key features from a QA 

system: 

• Timeliness. Answers should be provided in real-time. Knowledge bases should 
include recent and complete information. 

• Accuracy. The precision of the QA system should be flawless. Not responding to 
questions that are not known is important. QA systems should mimic common sense 
inference. 

• Usability. More domain specific knowledge must be incorporated in QA systems. 

• Completeness. Complete answers need to be provided. Answer should be fused 
between several different data-sources. Open-domain and restricted-domain 
knowledge might need to be combined to provide an accurate answer. 

• Relevance. Answers to a question must be relevant within the current context. This 
relates to when a user issues follow up questions, and the system considers the 
context of previous questions to determine the answer. 

Given the above goals, systems have not really improved that much since the 

roadmap was released. Many systems still struggle with factoid type questions. Open-domain 

systems still do not formulate answers in a very readable way. The state of the art open-

domain systems are not close to being real-time, especially not if you consider that a QA 

system should support serving thousands of clients at the same time. 

Some focus in the roadmap document was put on different types of questioners and 

that different answers need to be produced based on their sophistication. 

• Level 1. Casual questioner. 

• Level 2. Template questioner. 

• Level 3. Cub reporter. 

• Level 4. Professional information analyst. 
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Several advanced QA research areas were presented with examples how a QA system 

should reason to provide answers that fit the questioner based on their sophistication level. 

Question classes was the first research topic. One important aspect of determining a question 

class is to determine the focus of the question. This can often only be done by knowing 

additional information about question context, domain knowledge, and also general world 

knowledge. The second research topic was to be able to determine question ambiguities and 

implications. An example question could be: “what recent drugs has Pfizer introduced on the 

market?”. The ambiguity here would be drugs developed by Pfizer or marketed by Pfizer. 

The third research topic was context. Supporting context based QA would mean that the 

system could potentially answer the same type of question differently based on the current 

context. An example could be if a user first asked a question about Las Vegas and then asked 

on what street the Eiffel Tower was located. The context topic could have been set to Las 

Vegas and the system would be able to determine that the user wants to know where the Paris 

hotel is located. One other research topic was somewhat related to the list question in the 

TREC question answer track competition where the systems need to extract the answer from 

multiple sources. This research topic was more complicated though because it introduced 

answer verification (see Table 2.1). The QA system would have to be able to resolve several 

different types of complex relations to render a proper answer. 

2.4 OPEN-DOMAIN QA VERSUS RESTRICTED-DOMAIN 

QA 

In this section the benefits and limitations of open versus restricted domain QA 

systems are analyzed in more detail. Open-domain QA systems can be defined as tools 

capable of extracting the answer to user queries directly from unrestricted-domain 

documents. Restricted-domain QA systems are geared more towards providing answers from 

knowledge bases that cover a specific domain such as student advising or computer repairs. 

In over a decade, the open-domain QA research has dwarfed the workload that has been 

devoted to developing restricted-domain QA systems. There are several reasons for this 

significant difference in focus. One of the main reasons for this difference in focus is the 

introduction of the internet. By using the internet, billions of indexed documents have 

become easily accessible through search engines. These documents serve as the main 
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knowledge base in an open domain QA system. Another strong reason is the addressable 

market that becomes available with an open domain system verses a restricted domain. An 

open domain system can facilitate almost anyone searching for simple factoid type questions.  

Table 2.1. Example of Answer Extraction from Multiple Sources 

Level 1 “Casual 
Questioner” 

Q: When was Queen 
Victoria born? 

Text 1: Queen Victoria (1854, 
1889) ruled Britain with an iron 
fist …. 
 
Text 2: British monarchs: 
Victoria 1832-1889

Edward 1874-1946

Elizabeth 1923-

 
Answer: 1832 

Level 2 “Template 
Questioner” 

Q: How many 
casualties were 
reported last week in 
Fredonia? 

Text 1: Last Monday two people 
were killed on the streets of 
Beautiville, Fredonia, after a 
bomb exploded 
 
Text 2: The terrorists murdered 
a family with a small child in 
Fredonia last Friday, near its 
border with Evilonia. The father 
just returned home the day 
before. 
Answer: five people 

Level 3 

“Cub reporter” 

Q: How many U.S. 
households have a 
computer? 

Text 1: Two families in three are 
connected to the Internet in the 
U.S. 
 
Text 2: Last year, IRS has 
received 150 million individual 
return forms. 
Answer: 90 million 

Level 4 
“Professional 

Information Analyst” 

Q: Why were there 
hacker attacks on the 
computers at 
University of 
California, Santa 
Barbara? 

Text 1: U.S. colleges have 
powerful computing facilities. 
 
Text 2:  Computer hackers need 
speedy processors to break 
security passwords. 
Answer: To use their computers 
for password  cracking 
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A large portion of the revenue sources online originates from advertisement. 

Enterprise companies such as Google, Yahoo!, and Microsoft want to create products that 

address a wide user segment. None of these companies currently have a strong open domain 

QA solution, but they are all working hard on different QA solutions. Yet another strong 

reason that open domain QA systems have received more focus is the U.S. government’s QA 

track competition. This competition has introduced several organizations and universities to 

open domain QA research.  

Open domain QA systems perform well in facilitating the basic need of the casual 

internet user. However, these systems are not sufficient to provide answers to more complex 

questions that would make QA become really useful. 

2.4.1 Benefits in Open-Domain 

Open domain QA systems benefit greatly from the abundance of data available on the 

internet. The more information an open domain QA system can access and process, the more 

efficient it becomes (Banko et al., 2002).  That the QA system accuracy would increase with 

more data is based on the theory that if several phrases are found with the supposed answer 

the likelihood that this is the correct answer increases. Many open domain systems in their 

initial phase will rewrite a question as an answer, or a part of an answer. The result of this 

transformation will then be used as a search query. Several open domain systems will also 

post the entire question as a search. In many cases these simple approaches will produce 

quality results when finding the correct answers to simple factoid type questions. The reason 

for this simplicity is that almost any type of trivial question will have a certain amount of 

coverage online. An example of this would be the question: Where is the Eiffel Tower 

located? One way to rewrite this question as part of the answer would be: the Eiffel tower is 

located. When using this partial answer string as an exact search in Google the first 

document returned contains the string: The Eiffel Tower is located in the St Germain district, 

Paris, France. The second document contains the string: The Eiffel Tower is located in Paris, 

France. Both these results would have been sufficient in answering the question. 

Most of today’s open domain question answering systems uses the large quantities of 

similar or redundant data available online to statistically justify the correctness of an answer. 

This is done based on the occurrences of the same answer in several documents. Small 
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answer chunks are extracted from documents. These documents have been retrieved as the 

result of the initial information retrieval phase following the query expansion. These answer 

chunks are then co referenced and combined in such a way that an answer is formulated 

(Morton, 1999).  

Several researchers have found that when increasing the amounts of data that are 

found covering the topic of the question it can reduce the complexity of the algorithms 

needed to produce a correct answer. Banko et al. (2002) states that “The more training data 

that is used, the greater the chance that a new sample being processed can be trivially 

related to samples appearing in the training data, thereby lessening the need for any complex 

reasoning that may be beneficial in cases of sparse training data”. 

2.4.1.1 AUTOMATICALLY UPDATED 

Many internet resources will receive frequent updates. If designed correctly, an open 

domain system can benefit from these updates. Automatic updates will limit or completely 

eliminate the work that would normally be required whenever new or updated information 

becomes available. This enables the open-domain system to quite effortlessly facilitate 

questions regarding highly variable content such as news resources. The system maintenance 

is reduced to frequently scanning existing content resources for updates and additions.  

2.4.1.2 BROAD COVERAGE 

If the open domain system does not constrain its web search to specific domains there 

is a high probability that almost any type of topic will be covered to at least some degree.  

2.4.1.3 COMPREHENSIVE RESEARCH 

AVAILABLE 

As stated earlier, the effort that has been put into the field of open domain QA 

research is significant. This will benefit anyone who plans on investing resources in open 

domain QA system development or research. 

2.4.2 Limitations in Open-Domain 

This section describes limitations that can be found in Open-domain question 

answering systems. 
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2.4.2.1 LARGE 

The amount of data covered in most open-domain QA systems is significant, many 

times exceeding several terabytes. Because of the large amount of data, there are challenges 

when determining the set of documents to include when searching for an answer. When the 

query or queries are formed during the initial IR phase of the QA system, it is critical that 

they are constructed just right. If the queries are too general, too many documents will be 

retrieved, and the system will not have enough resources to process the resulting documents. 

This will cause the system performance to suffer and result in unacceptable delays. On the 

other hand, if the queries are too specific there is a high chance that the correct answer will 

not be part of the returned document collection. Determining how many documents will be 

required to answer the question depends on the complexity of the question. If the question is 

very common, it will result in large amounts of documents being returned. Restricting simple 

queries will still have a high likelihood that the correct answer is found. Determining the 

complexity of a question is very hard. “We do not yet understand how to predict what makes 

some questions harder than others” (Kukich, 2000). An example would be the question, 

what courses would you recommend me to take? This question would require knowledge 

about all courses available, and also possibly information on what focus the student has who 

is asking the question. The challenges in determining the complexity of a question leaves an 

open-domain system in a dilemma. The open-domain system works to construct queries in a 

way that will generally provide good results for a large number of queries. The amount of 

searchable content available through search engines will likely continue to grow 

exponentially for some time. This will further impose a more stringent way to construct 

open-domain queries to target correct answers. The hardware performance of computers is 

steadily increasing. To improve QA, the algorithms need to become more complex. More 

complex queries require better query resources that are tied to the searchable content. 

Additional complexity requires additional storage and processing power; this will not be a 

commercially viable solution for most open domain QA systems. When the document 

collection is increasing at the rate of today, open-domain systems will have to devote most 

focus on efficiently managing very large amounts of data. The focus should instead be 

directed toward extending the functionality and efficiency of the QA system itself. An open-

domain system is limited on its query resources. These resources facilitate simple searches 
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through the document collection. Features such as named entity taggers 

(Greenwood, & Gaizauskas, 2003), predictive annotation (Prager, Brown, Coden, & Radev, 

2000), and comprehensive indexes are very useful to improve the performance of a QA 

system. These features rely on synonym extraction and deeper NLP analysis which increases 

the system storage requirements. This means that an open-domain system cannot construct an 

extensive feature rich repository of resources. The open-domain system will have to rely on 

the most efficient features that will have limited storage requirements.  

Another problem with a very large knowledge base is related to the way most people 

ask questions. The first question is usually not that complex, but is then followed by more 

detailed questions relating to the same topic. With a large knowledge base, an open domain 

QA system will be limited to the initial questions and will usually not be able to provide 

answers to more complex follow-up questions. 

Almost all open-domain QA systems require that a very large amount of documents 

refer to the same type of information. This makes it very hard to transition an open-domain 

system to cover restricted domains. Applying an Open Domain question answering system 

on a restricted domain it will not have a large document base covering the same information. 

This will result in the quality of answers decreasing significantly.  

2.4.2.2 CONTENT QUALITY 

The inability to control the content of the open-domain knowledge base results in 

several drawbacks. An open-domain system will suffer from misspellings, badly formatted 

web-pages and text. The documents can also hold malicious or deliberately misleading 

information. The information can be biased, to present one among competing views. All 

these scenarios will hinder the open-domain system’s ability to find and construct correct 

answers. 

2.4.2.3 INACCURATE CONFLICTING DATA 

The main benefit of an open-domain QA system also has its downfalls. Relying on 

the abundance of data to statistically prove accuracy may result in a flawed approach for 

several types of questions. The Language Computer Corporation (LCC) has an online version 

of their NL QA system. When presented with the following question: What will be the price 
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of the Playstation 3? The LCC system responds with candidate answers containing several 

different prices. The prices are $399, $800, $599, $499, $499, and $600 respectively. The 

correct answer at the time of the query was $499. A user would not be able to determine this 

unless visiting the documents where the prices were extracted from. A user might not be able 

to determine the correct answer even by reading through the documents the information 

originated from. This is a good example of an open-domain QA system trying to answer 

questions about rapidly changing facts. Using multiple sources of unstructured text, and 

weighing extracted snippets by the number of occurrences and various other criteria, older 

data might be considered more relevant than new. This makes sense because the Playstation 

3 game console was initially thought to be priced around $800. There was also discussion 

about trying to match the price against Microsoft Xbox 360 which was priced at $399. When 

most web content is not time stamped, or can not be trusted to be time stamped correctly, an 

open-domain system cannot efficiently include time related information in the answer 

ranking process. In a restricted-domain system there will usually only be one answer 

provided. A restricted-domain system is backed by the structured or semi structured 

knowledge base. If the knowledge base is properly maintained, or provided by a trusted 

knowledge provider the problem mentioned above would less likely occur. Therefore, the 

system could easily be fixed. 

Open-domain systems that are heavily based on the redundancy of information, will 

work better for fixed factoid type questions. These factoid type questions are part of the 

TREC competition (Voorhees, 1999). However, these questions are less likely to be asked by 

regular users. When the question is directed towards a restricted domain, the open domain 

QA system will most likely mislabel it as a general question and provide an inaccurate 

answer.  

2.4.2.4 MAINTENANCE 

Open domain systems that rely on a knowledge source that is not controlled by the 

staff administering the system, will always suffer from maintenance problems. This model 

fits most open-domain QA systems. If a resource needs to be extended or updated but resides 

outside the direct control of the system, it will end up causing problems. Modifying an open-

domain system to handle these types of scenarios is hard. It becomes problematic adding 
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additional knowledge to the system. There is no easy way to make sure the system learns 

about new facts. The system will not be able to provide accurate answers if the only way to 

learn new facts is when third party providers update their content. 

2.4.3 Benefits in Restricted-Domain 

In a restricted-domain QA system there are a lot of specific properties that can be 

exploited by means not possible in open-domain QA. A question answering system requires 

understanding of natural language text and the QA system requires much linguistic and 

common knowledge for answering correctly. One way to improve the accuracy of a question 

answering system is to restrict the domain it covers. By restricting the question domain, the 

size of the knowledge base shrinks and several different methods to efficiently process 

questions becomes available. Many of these methods would be too process intensive to apply 

in an open-domain QA system.  

2.4.3.1 TECHNICAL TERMS 

In some restricted domains, many of the questions can only be answered correctly by 

experts. These types of restricted domains are usually associated with a large amount of 

technical terms. These technical terms might exist only within that particular domain. Within 

open-domain QA systems these terms are usually discarded as misspelled words or words 

where no type or word-sense can be associated. Within restricted-domain QA systems these 

technical terms play an integral part of determining the answer to a question. Technical terms 

can be included in domain specific word-lists and lexicons. These resources hold information 

on what the term means and how it is associated with other terms within the restricted-

domain. In this manner the results from a query can be greatly improved compared to those 

terms being discarded. A restricted-domain QA system can use this information to generalize 

terms or find alternative terms to use in the query expansion and answer selection processes.  

2.4.3.2 ACCURACY IN UNDERSTANDING 

CONTENT WORDS 

Restricted domains will naturally impose a restriction on the meaning of polysemous 

words. Polysemous words are words that can have several different meanings. There is a 

much higher chance that a basic bag-of-word approach will render quality results. 
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Polysemous words such as the word interest can have several meanings in an open-domain 

QA system. This word could mean interest in taking some course work, or the interest on 

your bank account. This requires an open-domain to more carefully control the query 

expansion to limit the search results based on what was asked. Polysemous words are quite 

common, “approximately 20% of the words in WordNet are polysemous” (Hung, Wang, 

Yang, Chiu, & Yee, 2005). Within the restricted student-advisor system, the word interest is 

highly unlikely to represent bank account interest which increases the chances of finding 

more relative information. This will limit the complexity needed for analyzing the questions. 

Therefore, additional processing resources can be used elsewhere. This fits well with the 

shallow parsing methods that are common for question answering algorithms. 

2.4.3.3 SPECIALIZED VOCABULARY 

In a restricted-domain QA system, it is easier to create a lexicon or an ontology that 

covers the knowledge base and the domain. This is due to the limited vocabulary that needs 

to be covered. If system is able to quickly access information about domain specific words, it 

is possible to use inference to determine the meaning of certain words within the context of 

the question. 

2.4.3.4 ACCESS TO DOMAIN SPECIFIC 

LINGUISTIC RESOURCES 

In an open-domain QA system any type of specialized resources need to be general. 

With general resources the system can provide enhancements across any domain. In a 

restricted domain, it is possible to build lexicons, dictionaries and ontologies that target a 

specific domain. There have been many successful restricted-domain systems developed in 

various fields such as biomedicine (Zweigenbaum, 2003). These resources can help both with 

analyzing questions and constructing answers. 

2.4.3.5 STRUCTURING OF THE KNOWLEDGE 

BASE 

When documents or resources that constitute the knowledge base of a QA system are 

stored locally, it can benefit the system. The access and structural layout of the documents 

can be changed to better facilitate the design of the QA system. This is much harder to do in 
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an open domain system where almost no control can be imposed on the knowledge base; this 

is due to the knowledge base being provided by third parties. An open-domain system can 

write an intermediate tier where this structure could be created programmatically. Creating 

an additional tier for this purpose will hinder performance. In a restricted-domain QA 

system, there are special components that are designed to parse specific documents within 

that domain. Completely structured data in the form of databases are also common. This is 

the case of the student-advisor system, where most of the knowledge base resides within a 

database. 

2.4.3.6 QUALITY AND RELIABILITY 

Quality and reliability are the greatest advantages of restricted domain QA systems. 

When the system can control its knowledge base, the quality and reliability of the answers 

will increase. Resources that contain content that is constantly updated is treated with less 

confidence and subject to more frequent verifications. If the data in the knowledge base is 

formalized this will improve reliability even further. A restricted-domain QA system can be 

designed to certify that the information provided is accurate and correct. This would be close 

to impossible in an open-domain QA system. 

2.4.3.7 ANSWER FORMATTING  

Restricted-domain QA systems allows for better control on how answers get 

formatted, especially in the case of the student-advisor, where answers are completely 

custom formatted based on the question. Custom formatted answers are preferred over 

programmatically generated answers because the answer can include some context. Users are 

found to prefer some context compared to an exact answer. That users prefer more verbose 

answers was concluded in a research effort by Lin, Quan, Sinha, Bakshi, Huynh, Katz, and 

Karger (2003) “users prefer paragraph-sized chunks of text over just an exact phrase as the 

answer to their questions”. From the same study it was also found that only 3.33% wanted an 

exact answer, 53% wanted a paragraph, 20% wanted a sentence, and 23% wanted a whole 

document. These numbers would indicate that open-domain QA systems most likely leave 

the user wanting more information.  Their very limited ability to provide more than just 

factual answers is unfavorable to most users. 
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2.4.4 Limitations in Restricted-Domain 

This section describes limitations that can be found in restricted-domain question 

answering systems. 

2.4.4.1 SCARCITY OF DATA 

The abundance of data is something all open-domain QA systems rely on. Several 

passages that relate to the question are extracted and non frequent passages are discarded 

when constructing the final answer. Experimental results show that question answering 

accuracy can be greatly improved by analyzing more and more matching passages  (Dumais, 

Banko, Brill, Lin, & Ng, 2002). In a restricted-domain, that luxury is usually not available. 

The scarcity of data makes it hard to write IE algorithms that determine which information 

extracted relates to the question. However, restricted-domain QA systems such as 

ContextQA will present fewer problems due to matching questions to existing QA pairs. It is 

not of great importance if the answer is represented multiple times or not, especially if there 

are multiple questions leading to the same answer. 

2.4.4.2 COMPLEXITY OF QUESTIONS 

In many restricted domains questions tend to be more complex than the questions 

handled by open domain. Therefore the questions are in many cases more verbose and 

longer. With this follows that the process of providing answers also becomes more 

complicated. 

2.4.4.3 COMPLEXITY OF ANSWERS 

More complex questions usually require more in depth answers. Generating a 

properly formatted answer is one of the major problems in both open-domain and restricted-

domain QA systems. A complex question can be a why or a how type question. These types 

of questions might need to compare different properties or provide an in depth explanation on 

how to do something. The problem of automatically generating an in-depth answer in the 

ContextQA system is not much of a problem. If the question is correctly matched with one of 

the existing questions in the knowledge base, a well-formed answer is guaranteed to be 

available. 
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2.4.4.4. EVALUATION OF RESTRICTED-

DOMAIN QA 

The limited amount of analysis using restricted-domain QA systems makes it 

challenging to accurately evaluate its performance. Open-domain systems have the advantage 

of having several common metrics and question sets that can be analyzed and compared 

against. Some researchers developing restricted-domain QA systems have found this 

problematic and have suggested several enhancements. These enhancements would separate 

restricted-domain QA evaluation from open-domain, “Simply applying the open domain QA 

evaluation paradigm to a restricted-domain system poses problems in the areas of test 

question development, answer key creation, and test collection construction.” (Diekema, 

Yilmazel, & Liddy, 2004). Any restricted domain QA system will be targeted towards a 

specific audience. Thereby the system might require different evaluation methods based on 

the target audience. The restricted domain evaluation extends beyond the domain specific 

questions and should incorporate tests that show how well it fits its target audience. To 

standardize this test process becomes difficult. 

2.4.4.5 COST OF MAINTENANCE 

By not having automatic updates done by third party resources, the maintenance of a 

restricted-domain QA system is left to the administrators. The problem of maintenance will 

become more significant in an environment where there is a high rate of change. The 

knowledge base can be complex, covering proprietary information that requires 

knowledgeable administrators. Some systems might require constant maintenance to conform 

to new data sources. All these aspects will increase the maintenance cost. Keeping the QA 

system small enough to be maintainable but still useful is a delicate balance which requires 

experience. A smaller company or organization may have minimal resources to hold a large 

knowledge repository. In many cases the repository would then cover areas that are known 

not to change very often. Smaller companies usually require outsourcing to properly 

implement a restricted-domain QA system. Implementing a restricted-domain QA system is a 

significant project with large up front expenses. A project like this can also yield an uncertain 

return which acts as a deterrent to small businesses.  
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2.5 THE CHALLENGES OF QUESTION ANSWERING 

SYSTEMS  

We do not yet understand how to predict what makes some questions harder than 

others (Kukich, 2000). One of the hardest aspects of question answering is complexity of the 

language the questions are formulated in. The English language by itself has hundreds of 

thousands of words and that is just when using a common dictionary. Then you have to add 

domain specific terms in a restricted-domain question answering system. Spoken languages 

and communication is mainly designed for humans and not computers. Computers could 

more easily communicate using a much more optimized language to better suit its 

architecture. Given that in today’s world humans have daily interaction with machines 

creates a need for better and more innovative interfaces between the two. There is a reason 

why this communication hasn’t gone very much further than simple instructions. The 

problems of making a computer understand spoken language are not trivial. Different words 

mean different things dependent on what the context is. Things that make it more complex 

are slang, bad grammar, and spelling errors. Humans can quite easily get past these types of 

problems given the great ability of understanding patterns. We can also apply our world 

knowledge to these patterns to be even more efficient. 

The hardest types of questions have been determined to be Why and How type 

questions. To provide an answer to these types of questions you usually need knowledge 

about everything the question relates to, and not only the direct context of the question. You 

might also need experience from several other topics which have to be combined and 

analyzed. A good example would be: Why is Question Answering Hard? To properly be able 

to provide an explanation on why writing question answering systems are hard you need to 

know almost everything there is to know about question answering. In the ContextQA system 

more than 25% of the questions are How and Why type questions. This is possible partly due 

to the design of the knowledge repository and limiting the problem scope. 

Another aspect that makes Question Answering hard is that the problem space 

intersects with several of the more complex research fields (see Figure 2.5) in computer 

science.  
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Figure 2.5. Intersecting QA research fields. 

These fields are mostly Natural Language Processing (NLP), Information Retrieval 

(IR), and Information Extraction (IE). The positive aspect to this is that QA systems will 

benefit from advances in any of these fields. 

The complexity of QA can easily be underestimated. The TREC competition shows 

this where new more advanced QA methods that extend past retrieving factoid type answers 

have not made much progress. There have not been any significant new results for quite 

some time. Because QA can be seen as part of NLP it will to a certain degree have the similar 

problems as NLP such as being able to understand world concepts. The IR portion of QA 

also introduces a whole slew of complex problems that need to be addressed. When a 

question answering system retrieves its initial set of documents to extract answers, the noise 

ratio can be quite high. The noise ration will be more limited in a restricted-domain system 

than in an open-domain one. However, in both types of systems there is a significant chance 

of getting irrelevant results even with the right set of search keywords. The QA system needs 

to be constructed in such a way that it can quickly sort out data that is not relevant to the user 

queries. Regular IR usually removes all stop words and only considers what is left. Stop 

words are words such as is, are, he, which, etc. Using only the approach of removing stop 

words is not sufficient in QA because just subtle changes in a sentence can completely 

change its meaning.  

1. Why should I have an advisor? (repository question) 

2. When should I have an advisor? (client question) 
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3. Where should I have an advisor? (client question) 

After removing stop words we are left with the words should and advisor, this 

qualifies the repository question for both alternative two and three but if the question only 

address why the student should have an advisor the answer would not be correct. Ideally the 

word When or the word Where should automatically invalidate alternative two and three. 

Finally, when information is extracted and an answer is formulated one of the most 

difficult tasks for a QA system is to determine if that answer is in fact correct. In a restricted-

domain QA system this problem is usually limited since the chance of erroneous data 

decreases with the size of the domain. An open domain usually tries to tackle false facts by 

correlating several documents against each other. This way decisions can be made on what is 

correct and what is wrong.  

2.6 ATTRACTIVE MARKET 

Because there are so many different ways of applying question answering to various 

markets, several companies are developing a wide range of different QA systems. Spoken 

dialog systems are getting more advanced where a person can call in and ask questions over 

the phone. These systems can be anything from a bank teller system, or a directory service. 

The potential savings for companies solely focusing on these types of tasks can be 

significant. In 2001 Forrester Research estimates that the cost of manually answering a 

customer inquiry by phone to be $33, e-mail $9.99, and a web self-help system $1.17. 

Online QA systems still remain more collaborative in nature. Users submit questions 

and other users answer their questions. Some companies like Ask.com have integrated 

support for natural language questions in their search engine. Ask.com has also sold this 

technology to companies like E*Trade and Toshiba. A large percentage of people are using 

search engines when looking for answers online. A significant portion of online revenue is 

made based on search engine advertisement.  It is natural that QA systems have become a 

very attractive problem to solve. 
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CHAPTER 3 

SYSTEM DESIGN 

This chapter gives a design overview of the ContextQA system. The QA roadmap 

research (Burger et al., 2000) was part of the inspiration when designing the structure of the 

QA system, and what problems to solve. The roadmap research document covers more or 

less how a flawless QA system should work. The document authors describe the many tasks, 

problems and techniques that need to be addressed to produce such a system. The roadmap 

document led to several of the decisions made in the process of compiling the final set of 

research topics included in the ContextQA system. Currently the QA research community is 

stagnant and the roadmap is already failing. The complexity of producing quality QA 

systems exceeds the commercial ability to create such systems. 

3.1 LIMITING THE PROBLEM SCOPE 

The field of Question Answering Systems has proven itself to be one of the hardest 

fields in Computer Science to solve. Many projects have failed due to the inability to 

properly understand the magnitude of the problem. In a project like this the scope needs to be 

carefully planned so that the results produced can still contribute to the research community. 

Without the backing resources available to large corporations this becomes that much harder. 

Given these facts I have tried to come up with a unique approach in designing a complete 

question answering system that uses some interesting approaches to solve some of the 

hardest problems. 

3.1.1 Restricted Domain QA 

The ContextQA system is focused on restricted-domain QA. The decision to target 

the restricted-domain is based on the earlier evaluation where I compare open-domain to 

restricted-domain QA system. Restricted domain QA has many of the same problems open 

domain QA has to tackle, but it requires a significantly smaller knowledge base. This 

decision limits the resources required to produce quality results. 
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Running a restricted domain QA system you do not have to rely completely on third 

party solutions such as online search engines but rather maintain the knowledge base locally. 

The process used to collect and build the ContextQA system knowledge base is mostly 

automated. To be able to automate building the knowledge base semi-structured web 

documents containing QA pairs are used to kick start the information gathering process. This 

provides a rapid way to produce a restricted domain knowledge base in a short amount of 

time. The information gathering to build the knowledge base is described in more detail in 

the question harvesting section.    

3.1.2 Shallow Language Understanding 

The main knowledge base of the ContextQA system is based on a semi-structured 

repository of QA pairs. The ContextQA system uses various shallow language parsing 

algorithms to match incoming questions against the repository of questions in its knowledge 

base. Shallow language parsing is different from complete parsing in that it usually only 

considers portions of a text, or chunks. Not having to break down the entire sentence into a 

syntactic parse tree or similar structure increases performance. A sentence such as Where is 

the cashiers office located, could be broken up in the following way, [Where is] the [cashiers 

office] [located]. With those chunks the system can understand that [Where is] and [located] 

hint that the answer is most likely a location. If the second chunk [cashiers office] also is 

included, shallow language algorithms can determine matching questions based on that 

information. Any question that is of type location and has the chunk [cashiers office] in it 

would be a likely candidate to try and match with.  

3.1.3 Completeness of Answers 

With completely formulated answers in the knowledge base the system can guarantee 

that a well formed answer exists if a question qualifies as a match to an existing question in 

the repository. Having well formed answers greatly reduces the complexity of the QA 

system, and enables the answers to exceed the quality of most existing QA system. Matching 

questions against other questions separates the system from common QA systems where 

information extraction, and answer formulation is done. A question answering system that 

constructs the answer programmatically will many times suffer from badly worded 
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responses. Given that most QA systems at the time can only produce simple factoid type 

answers complex answers that require a large body of text are not even remotely feasible. 

Not having to perform information extraction and answer formulation limits the problem. 

Another benefit with having QA pairs is that anyone could quite easily extend or 

modify the knowledge base of the system without being required to have any particular 

knowledge about question answering system design. This way several departments in an 

organization which is implementing the QA system can easily work in parallel to extend the 

system. 

3.2 ADVANCED CONCEPTS 

This section lists some of the more advanced concepts that the ContextQA system 

utilizes from that of a standard QA system.  

3.2.1 Interactive QA 

Some of the more advanced topics that have not effectively been tackled in QA systems 

to date include interactive QA. Interactive QA means that the system can converse with the 

user and keep track of what has been said earlier. One of the best conversational systems in 

the world is A.L.I.C.E (Artificial Linguistic Internet Computer Entity). The A.L.I.C.E system 

uses a markup language to describe its knowledge base. This markup language is named 

AIML (Artificial Intelligence Markup Language). AIML is a derivative of XML and 

describes units that hold topics which contain categories. Every category has pattern 

elements which are used to match against a user’s input. The patterns can support wildcards. 

The system converts the patterns into a tree structure (see Figure 3.1) that is used for 

matching incoming sentences. As the figure shows, a random response can be used if several 

responses have been specified. The algorithm is a restrictive version of the depth first search. 

Dr. Wallace states that the branching factor for the first node is about 2000 for 20,000 

categories. Then the average branching factor goes down to 2 and for each new branch it 

decreases further. An incoming question is broken up into words and then matched against 

the tree structure until an answer is found. The algorithm can be described as follows: 

1. Given: 
an input starting with word X, and a graph:  
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2. Does the current node contain the wildcard key _? If so, search the sub graph rooted 
at the child node linked by _. Try all remaining suffixes of the input following X to 
see if one matches. If no match was found, try:  

3. Does the current node contain the key X? If so, search the sub graph rooted at the 
child node linked by X, using the tail of the input (the suffix of the input with X 
removed). If no match was found, try:  

4. Does the current node contain the wildcard key *? If so, search the sub graph rooted 
at the child node linked by *. Try all remaining suffixes of the input following X to 
see if one matches. If no match was found, go back up the graph to the parent of this 
node, and put X back on the head of the input.  

5. If the input is null (no more words) and the current node contains the <template> key, 
then a match was found. Halt the search and return the matching node. 
 

HELLO ALL

* OFF

*

WHAT

IS

NEW* YOUR

NAME

1. Hi

2. Howdy

3. Hello, how are you?

1. There could be a few 

exceptions.

2. Not all of them?

3. That is a rather 

sweeping 

generalization.

Give me an example.

I don’t know what * is.

Not much what is new 

with you?

My name is Student 

Advisor.

 
Figure 3.1. A.L.I.C.E tree structure. 
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The wildcard _ means that the sentence is starting with the text replaced with _. The 

wildcard * can be replaced with any phrase from the sentence. Given A.L.I.C.E’s 

straightforward design it is still more advanced than any commercial conversational software 

(Bush, 2001). 

My first intention was to completely base the ContextQA system on an enhanced 

version of A.L.I.C.E. However, using A.L.I.C.E requires an extensive use of wildcard and 

manual updates to produce quality results. Taking a base set of questions and converting 

them to AIML without wildcards results in a close to useless system because it is the same as 

performing exact matches directly against the questions themselves. To be able to increase 

the quality each question would have to be analyzed, grouped and modified to utilize the 

more advanced functionality provided by A.L.I.C.E. These additional features are things like 

context specific attributes set by particular questions and answers. My second thought was to 

expand questions based on synonyms and different wording to the maximum number of 

permutations possible into the tree. Designing a QA system this way with completely static 

questions might work well in trivial scenarios with a very restrictive domain. When the QA 

domain is expanded the memory requirements of the tree will increase exponentially. 

Because of the limited performance of this approach it was abandoned early in the research. 

In a more complex environment where the system should cover a larger knowledge base the 

requirement for a more dynamic algorithm design becomes a necessity. 

Instead I decided to use A.L.I.C.E as a fallback if the QA algorithm confidence was 

too low. What this means is that if the confidence is low the answer produced is unlikely to 

be the correct one. This way a user will still get an answer or a continued discussion. The 

base conversational AIML repository included with the A.L.I.C.E distribution is used for this 

purpose. The repository has been slightly modified to fit that of a student advisor. It can be 

argued how useful this is to an end user, but given that most people want to speak with an 

actual person when requesting support, QA systems will have to improve in this area to 

become commercially viable.  

3.2.2 Automation 

When designing the ContextQA system a great deal went into thinking about 

automation. With the complexity of QA you want to limit the amount of work initially setting 
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up a system that covers a completely new topic. Using resources to bootstrap almost any 

domain knowledge is described in more detail under the section “building a targeted 

knowledge base”. 

3.2.3 Responsiveness 

System responsiveness was one of the topics in the QA roadmap. A QA system needs 

to be close to real-time to be useful. This was also considered when designing the ContextQA 

system. Having a real-time system will many times limit the type of algorithms that can be 

used. This includes fast models of retrieval in the information retrieval phase. Answer 

extraction must be fast and the reasoning mechanism must also execute quickly. That the 

answer extraction in the ContextQA system is fast comes naturally because of its design. The 

system should also be able to scale easily. All of these different performance sub tasks are 

addressed in the research and system design. 

3.3 PREVIOUS WORK 

There has not been a significant amount of work previously done that is similar to the 

QA system developed as part of this thesis. Much more work has been devoted to open 

domain question answering. There has been work done previously using frequently asked 

questions and answers as the knowledge source. One such system is FAQ Finder (Hammond, 

Burke, Martin, Lytinen, 1995). The FAQ Finder system bases its knowledge on UseNet 

which I described earlier under the section Early Question Answering utilizing Networked 

Computers. The system should be classified as an Open Domain system but it can still be 

compared to the work in this research for its use of question and answer pairs. FAQ Finder 

will use START in its information retrieval phase. START is used to retrieve FAQ 

documents that contain terms used in the user’s question phrase. The system uses a couple of 

different algorithms;  these algorithms will determine if the user entered question matches 

any of the QA pairs in the FAQ documents returned. Statistical similarity, Semantical 

similarity, and Coverage are used.  For statistical similarity tf-idf (term frequency – inverse 

document frequency) is used. Semantic similarity is done by analyzing each word in the 

user’s question and its semantic relationship with other words in the FAQ. The coverage is 

the percentage of query terms that intersect with the user’s query. AutoFAQ (Whitehead, 
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1995) is another QA system that uses FAQ documents. In the case of AutoFAQ, the FAQ 

documents are also retrieved from UseNet, but maintained locally instead of searching 

external resources. There is not much coverage on how AutoFAQ extracts answers. The 

system compares the question a user inputs against the local repository of QA pairs to extract 

an answer. 

Other work using frequently asked questions is Automated FAQ Answering 

(Sneiders, 1999). The Sneiders QA system uses a method he calls Prioritized Keyword 

Matching. Three different types of keywords are used in this process. These three keyword 

types are required, optional, and forbidden keywords. Each of these keyword types is 

associated with an answer. The primary keywords have to be present in the input question to 

further match it against a FAQ entry with those primary keywords. The optional keyword 

does not have to be present. If several optional keywords do not intersect between the FAQ 

entry and the input question, it will not be considered a match. The number of optional 

keywords that cause a match to fail is configurable, but usually set between 0 and 1. 

Irrelevant keywords are removed from the question. Irrelevant keywords would be the same 

as stop-words. If the input question has any of the forbidden keywords listed in a FAQ entry, 

it would automatically fail the comparison. The keywords are associated with FAQ entries in 

a manual fashion by the administrator of the QA system. This means that the administrator of 

the QA system needs to be very familiar with the system domain. The administrator also 

needs to be very familiar with linguistics. The administrator will only then be able to 

determine what keywords are relevant to certain FAQ entries. Sneiders also brings the 

restricted domain dictionaries to an extreme. Each FAQ entry can have its own dictionary. 

This includes things like singular, plural form, different spelling, split, merged form, and 

synonyms. This information is also set up manually, but it is not required. The Prioritized 

Keyword Matching algorithm analyzes the incoming question against features that are 

associated with an answer. The algorithm does not analyze the answers, and does not have 

any questions coupled with the answers in its knowledge base. 
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CHAPTER 4 

BUILDING A TARGETED KNOWLEDGE BASE 

A QA system designed to provide the same information that is usually obtained from 

a Computer Science Student Advisor should be categorized as a targeted knowledge base. 

Such a system would pose a challenge to an administrator implementing the QA system if he 

is not familiar with this particular knowledge field. This unfamiliarity would make it hard to 

determine what the most frequently asked questions are. Given this targeted area of expertise, 

the knowledge base would best be derived from an actual repository of the most commonly 

asked questions that students actually pose to their advisor. To have actual questions would 

be preferable compared to building a knowledge base from questions that are just thought to 

be common ones. 

One benefit when modeling a student advisor is that there are thousands of student 

advisors around the world. Today many Universities have started to use the Internet as a 

resource to alleviate the number of questions asked to advisors. This is done by listing 

frequently asked questions on University web pages. 

Given the many lists of frequently asked questions available online, I determined that 

this would be a very good start of my knowledge base for the system in my research. 

However, the vast amount of questions to harvest tends to be a tedious task. This task 

becomes difficult given the wide variety of different formats that schools use on their web 

pages. Many times a question can be listed within a larger body of text where big portions of 

the text need to be excluded from the final result. After researching several websites, I 

determined that a system that could automatically extract questions would be the ideal 

solution. This system would also provide a natural building block of a complete QA system 

solution. The system would take a URL as input and proceed to parse the document that URL 

leads to. It would extract and harvest questions and answers with the supervision of an 

administrator. This way it is easy even for a novice administrator to build a targeted 

knowledge base covering some common field. This cannot be done for every single topic, but 

as of Jan 1, 2004 there were 194 million registered domain hosts on the internet. Google had 
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indexed 8 billion pages as of 2005. With the exponential growth pattern of the internet there 

is a high likelihood of finding these types of resources for almost any topic.  

An open-domain QA system does not have the luxury of being able to process web-

documents to the degree of the student-advisor system. Open-domain question answering 

systems usually perform a certain amount of work of indexing into existing documents and 

extracting certain data points. This process will facilitate quicker searches which will reduce 

the time to present that answer. It will also increase the quality of the answer. However, in an 

open-domain system this has to be done in a very shallow fashion due to the storage and 

processing requirements. To generate a more comprehensive knowledge base to cover all 

specific fields is not feasible. This is one reason why current open-domain systems mostly 

deal with factoid type answers. A good example of a system like this is the predictive 

annotation QA system developed by Prager, Brown, Coden, and Radev (2000). This system 

processes a very large document base to extract various data points referring to factual 

information. It also indexes into these documents so further processing can be done during 

the answer retrieval. This system has several different ways to classify and rank the collected 

information but suffers from the same flaws as all open-domain systems suffer from. The 

documents might not be formatted sufficiently to describe certain facts that are critical to 

correctly describe the content of the document. The facts could contradict each other. If the 

document contains longer more descriptive information these cannot be extracted correctly 

with this method. Most open-domain systems will not have a way of building and indexing 

more descriptive answers. One reason that many open-domain systems are designed to 

handle factoid type questions such as who, what, when, and where questions are that it is 

much easier than dealing with how, and why type questions. Another reason is that many 

researchers have been motivated by the question answering track of the Text REtrieval 

Conference (TREC). The types of questions in the TREC question answering track are a 

misrepresentation of questions that people usually pose. Table 4.1 shows the question type 

distribution in TREC as described by Moldovan, Pasca, Harabagiu, and Surdeanu (2002). 

However, when looking at 200 questions posed to the collaborative answers service provided 

by Yahoo!, the distribution of how type questions are closer to 50%. Building a system that 

automatically collects verbose answers for complicated questions would eliminate the need 

of having to combine chunks of information to construct an answer. 
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Table 4.1. Distribution of TREC QA Track Question Types 

Type Number (%) 

Class 1 (Factual) 985 (67.5%) 

Class 2 (simple-reasoning) 408 (27.9%) 

Class 3 (fusion - list) 25 (1.7%) 

Class 4 (interactive – context) 42 (2.9%) 

Class 5 (speculative) 0 

 

4.1 QUESTION HARVESTING SYSTEM 

The reminder of this chapter will cover the design and implementation details of the 

question harvesting system. A system that automatically retrieves questions and answers 

from web based content needs to have certain features to be able to control what is being 

collected. If there is no control, certain questions might be extracted that have no meaning in 

the context of the target knowledge base. The system could address this problem by having 

prior knowledge about what to collect. In this case the system is building the knowledge base 

that would be required to make these kinds of decisions. Thus, these types of decisions are 

left up to an administrator. 

4.2 SYSTEM DESIGN 

The question harvesting system is implemented as a web application with the Model 

View Controller (MVC) software architecture in mind (see Figure 4.1). This architecture is a 

good way to implement web applications. By design it separates business rules and data 

handling from the logic that is responsible for rendering the user interface. This separation 

also promotes code reuse which is preferable in any larger project. I picked Java as the 

programming language to implement this system because it works really well when 

interacting with web resources. Java is usually a good choice if the system is not required to 

handle any significant processing load. With Java you can quickly develop a working 

prototype without having to devote too much time to details. The system runs within a 

Servlet container and can therefore be installed on almost any standard web server.  
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Figure 4.1. MVC software architecture. 

The user interface for the FAQ parser is a wizard interface that guides the 

administrator through a set of pre-defined steps. In each step he is prompted for various 

decisions and formatting tasks. In the final step the resulting question and answer pairs are 

permanently stored in a relational database. The resulting questions and answers can later be 

accessed by administrative tools, and the main question answering application. 

4.3 CONTROLLER SERVLET 

The controller is implemented as a Servlet. This Servlet controls what content should 

get produced based on the current state of the application. The application state is in turn 

controlled by attributes that are passed back from the client web browser to the controller. 

The controller Servlet class is named UI, and its UML representation can be viewed in 

Figure 4.2. The UI Servlet controls a set of classes that are responsible for producing the 

content that will be fed back to the client web browser. Each page or application state is 

implemented by extending the Servlet-page class (also depicted in Figure 4.2) which is an 

abstract class. Each Servlet-page implementation needs to at least implement the execute 

method. This method should in turn generate content to be pushed back to the client.  
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Figure 4.2. Controller Servlet UML diagram. 

The UI Servlet will load and instantiate one or several Servlet-page implementations 

through a dynamic class-loader for each client request. The UI Servlet also provides the 

Servlet-page implementation with session state for each client which is kept server-side. The 

session state is where application specific parameters are stored and maintained. The session 

is tied to each unique client by setting a cookie in the client web browser. The Servlet-page 

implementation can read and modify session parameter names and their values during its 

execution. 

The Servlet-page class makes the process of generating content more streamlined for 

its implementation classes. Simplicity is accomplished by providing a suite of methods that 

makes it easy to generate complex text documents. This is done by the use of text templates. 

A text template is a text document that can represent HTML, SQL, XML, or any type of 

document that can be formatted as plain text. The templates are stored on disk and the 

Servlet-page class utilizes a template factory class to gain access to these template files. A 

Servlet-page implementation class can issue a push template method call with the name of a 

template file. This method will cause that file to be loaded and set as the current active 

template. This type of call would be done in the Servlet-page execute method call. If this 
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template is a static HTML file that was chosen because of a certain application state the 

execute call can end here.  The content of that template will then be pushed back to the client. 

The template files also support a text-tag that can be replaced by calling the Servlet-

page insert method call. The insert method call takes a tag-name and an object in its method 

signature and will replace the template tag with the resulting text of that object. This can be 

done multiple times for each template tag and each template can have multiple insert tags. 

What makes it more dynamic is that the Servlet-page supports to push a template into another 

template and set that new template as the current active template. Complex hierarchies of 

templates can be constructed by issuing push and pop template calls. The Servlet-page also 

supports switching to another Servlet-page implementation by calling the change-page 

method. An example of this would be when a user tries to login to an application and the 

login is successful. Instead of performing a redirect roundtrip to the client the system can 

automatically switch to its new state. The Servlet-page implementation also has access to all 

URL parameters. These parameters are passed to the UI servlet by the get-parameter 

methods.  

4.4 WIZARD INTERFACE 

This section describes the wizard interface that guides the administrator through the 

process of building the initial knowledge base using URLs to FAQ documents found online. 

The wizard interface is implemented by extending the servlet-page class described in the 

previous chapter. The wizard is setup as a three step process which is described in more 

detail below. 

4.4.1 Wizard Interface Step One 

In the first step of the wizard the administrator is presented with a screen where he is 

prompted to enter a URL that leads to a FAQ document. Before starting the wizard, the 

administrator would have collected several URLs that lead to documents that ideally have a 

comprehensive list of questions and answers. These questions and answers should match the 

context of the knowledge base that the administrator is trying to build. The URL can lead to 

either HTML formatted pages or text files. The parser supports both these document types. If 

the URL is not formatted correctly or leads to a page where no question can be extracted, an 
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error message will appear. This error message will describe the problem and the 

administrator will have to adjust the URL or try a different one. The URL that is shown in 

Figure 4.3 is one that I used when building the knowledge base for the ContextQA system. In 

this process I ended up using more than one hundred FAQ documents from all the major 

colleges in USA and other English speaking countries.  

 

 

Figure 4.3. Step one of the FAQ parser wizard. 

4.4.2 Wizard Interface Step Two 

In the second step (Figure 4.4) of the wizard all questions that have been extracted 

from the FAQ document will be listed on the screen. All questions are displayed with check 

boxes next to them which are all initially checked. On this screen the administrator is able to 

determine how well the questions were extracted from the document that he specified in step 

one. If the results are not satisfactory the administrator has the option to go back to the initial 

step of the wizard. If any of the questions listed on the screen are not applicable to the 

knowledge base that the administrator is trying to build, he should uncheck those. This will 

cause them to be excluded from the final set of questions that are permanently stored in the 

knowledge base. When a complete set of questions have been selected the administrator can 

click continue to go to the final screen.  

4.4.3 Wizard Interface Step Three 

In the third and final step (Figure 4.5), the questions with associated answers will be 

listed on the screen. In this step the questions and answers can be edited for correctness. This 

feature is made available so that the administrator can adjust the questions and answers to 

produce exactly what he wants to store in his knowledge base. In this final step the 
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administrator will have one last option to exclude question and answer pairs. This is done by 

un-checking the check box next to the question.  

 

 

Figure 4.4. Step two of the FAQ parser wizard. 

 

 

Figure 4.5. Step three of the FAQ parser wizard. 
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When finished the administrator would click submit or back if he is not satisfied with the 

result. Submitting the questions and answers will cause them to be permanently stored in a 

database. The administrator will be brought back to step one of the wizard where he can enter 

a new URL or leave the interface. 

4.5 DOCUMENT PARSER 

The document parser is responsible for locating and extracting questions and answers 

from the FAQ documents. The parser needs to be able to determine when a question starts 

and when it ends. This might not seem too difficult at first; however the large amount of 

badly formatted web pages, different designs, document types, and layout of these 

documents, complicates the situations. The collection algorithm to adopt for these stochastic 

environments can slowly evolve to be able to handle almost any type of document. Dealing 

with documents containing errors and documents that are constantly changing does not affect 

this particular system. Having a controlled collection mechanism will let the administrator 

sort out any flawed information early on in the collection process. This way the final semi-

structured knowledge base will have a very low error rate. However, when querying an open-

domain QA system documents many times have to be re-processed to extract additional 

information for complex queries. This increases the risk of trying to extract information from 

documents that now have changed or include errors. 

4.5.1 Parser Design 

The first thing the parser does is to connect to the database where the QA knowledge 

base is stored. This connection is used to determine if the URL has been parsed previously. If 

the URL has already been parsed, this will trigger a message to be presented to the 

administrator of the date when the URL was last processed. In any case the parser will 

retrieve the document from the URL and the administrator will have the option to process or 

re-process the document. The document can be either in plain text or HTML format. The 

document type is usually specified in the HTTP header returned from the web server. The 

parser does not determine the format of the document by analyzing HTTP headers because 

many times these headers are not setup correctly. 
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The Java class that is responsible for parsing the retrieved document is the FaqParser 

(see Figure 4.6). To be able to efficiently parse text documents the FAQ parser uses a more 

generic text parser which is also depicted in Figure 4.6. The FAQ parser needs to have 

several more complex text parsing options than the standard Java API text utilities provide. 

The two main parser features are the option to parse the document forward or backwards and 

to be able to save the state of the parser at any point. These two features make it possible to 

implement more complex parse logic.  Being able to parse forward or backwards becomes 

useful when parsing forward to find the end of a question, and then trying to find the 

beginning of the question. The parser would first parse forward and then backwards. 

 
Figure 4.6. FAQ parser classes. 

Some of the features of the text parser are described in more detail in Table 4.2. The 

main part of the FAQ parser that is called by the wizard Servlet-page implementation takes 

two attributes. These two attributes are the content of the document and an index where to 
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start parsing. If an index is not specified it will start parsing from the beginning of the 

document. If the document is determined to be HTML it will start at the starting body tag of 

the document to avoid any JavaScript syntax.  

Table 4.2. Text Parser Features 

Parse method There are several ways to parse the document text using the parsers 

parse-to methods. All these methods will search the document until 

a certain criterion is met. The supported criteria are the following:  

parse to a single token, an index, the closest match of an array of a 

set of supplied strings, the next uppercase character, or a regular 

expression. Each parse-to method will return the string from the 

current index to the index which matches the criteria. 

Parse direction The parser can be set to parse either forward or backwards. This is 

useful if the end of a question is determined by a question mark and 

the start of the question needs to be determined. The parser can then 

be set to parse the document backwards from the current index. 

Save-points In some scenarios more than one algorithm or search needs to be 

executed before information is extracted correctly. If some 

algorithms fail it is usually desirable to start over from a previous 

state and try something else. For these types of scenarios the parser 

supports save-points. A save-point works in a similar way as the 

save-points in Oracle where a rollback will exclude queries that 

happened after the save-point was set. The parser has a rollback 

method that brings the parser back to the state of the save-point. 

Multiple save-points are supported. 

Case-insensitive 

parsing 

For some algorithms case-insensitive parsing is preferable. In these 

scenarios the parser can be set to ignore case. 

 

The JavaScript syntax is usually written within the HTML header tag. JavaScript and 

other scripting languages tend to confuse the parser because of all the special characters. The 

parser will then extract questions one by one until all questions have been extracted from the 
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document. The program flow of the main part of the parser is presented in Figure 4.7. The 

FAQ parser has three different steps it goes through before it determines that the parse 

process has failed. 
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Figure 4.7. Program flow diagram for the FAQ parser. 

In the first step it tries to parse the document as an HTML formatted text document. 

When implementing the text parser, I discovered that FAQ documents that were formatted 

using HTML had one common feature. This feature made them easier to parse than regular 

text documents. I discovered that due to the fact that the markup tags usually surround the 
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questions and answers in different ways to format the text. This fact can be adopted by the 

parse algorithm to more efficiently parse HTML FAQ documents. The question mark (?) will 

identify a question when written using the Latin alphabet. In the English language the 

question mark will be positioned at the end of a written question. When the end of a question 

is found in an HTML formatted document, the parser will continue parsing until it finds the 

outer most closing HTML tag. After this is done, if a matching starting tag can be 

determined, the content between the starting tag and the ending tag will be the question. This 

is a somewhat simplified description of the process and the complete program flow for 

parsing the HTML FAQ document is shown in Figure 4.8.  

If the HTML parsing fails, the parser will resort to other means of extracting the 

questions. This is shown in Figure 4.7 as the non-HTML text parsing logic. It will use two 

different methods. The first method is using common question prefix strings used in FAQ 

documents to determine when a question starts. Questions are commonly prefixed with 

things like: 

• Q: or Q. or Q) 

• Question: 

• Ask: 

If this does not work the parser will try to use common words that usually indicate the 

start of a question. Words such as ARE, CAN, DO, DOES, HOW, IF, IS, WHAT, WHEN, 

WHERE, WHICH, WHO, WHY, and WOULD are some of the common words. Both these 

methods will require that a question mark be available prior to the word or symbol (except 

for the first question extracted). In this manner the parser can quite efficiently tackle both 

HTML and plain text FAQ documents. Most FAQ documents that are found through web 

searches will be formatted using HTML. With HTML formatted document the parser success 

rate is much higher than plain text documents.  

If the parser succeeds at extracting a set of questions from the document it will store 

the question start index inside a question container object (see Figure 4.9). The parser will 

use this index to revisit the website and retrieve the answers after the administrator has made 

his final choice what questions to keep. The parser will also check for duplicates within the 

set of questions. Many web sites will put a table of contents listing all the questions on top of 

the document. This will cause the questions to be repeated with their associated answer  
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Figure 4.8. Program flow chart for the extract-question method. 
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Figure 4.9. Question and answer container classes. 

further down on the page. If the first duplicate to the first question can be determined, all the 

questions up until that point can be discarded. Then the table of contents will not affect the 

result. 

At the last step when a set of questions and answers have been determined they are 

inserted into the database with the associated URL reference. The reference will indicate 

where the question and answer were initially located. This can be useful for administrative 

purposes. During the insertion phase if a question already exist the new qa-pair will be 

discarded. If an answer already exists but the question is different, the new question is linked 

to the existing answer. This way there exist a many-to-one relationship between questions 
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and answers. To increase the success rate of a question matching algorithm you would want 

to map as many differently formulated questions to the same answer as possible. 

During the development of the parser I found it hard to keep it backwards compatible 

with documents it historically was able to parse. To solve this problem I implemented a JUnit 

test which automatically could verify a new parser against a set of older documents. These 

documents are stored with the distribution and can therefore be tested for accuracy any time 

the parser is extended with additional logic. 

4.6 QA DATABASE SCHEMA 

The database role in the QA system is to store the questions and answers representing 

the knowledge base. MySQL was chosen as the underlying database software (Appendix A). 

This relational database supports all the necessary features needed for the knowledge base. 

Features such as SQL query language to insert and extract information, and 

constraints to maintain referential integrity. The schema consists of three tables which can be 

viewed in the ER diagram in Figure 4.10. The database tables hold all the information that 

has been extracted from the FAQ documents. The question table includes the question text 

which is the question without a question mark. The resource reference ID in the question 

table refers to the URL where the question was initially retrieved from. There URLs are 

 

 
Figure 4.10. QA database ER diagram. 
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stored in the resource-reference table. The URL reference is not required because questions 

can be entered manually into the knowledge base. The question table has a category ID 

which is also not required. The status-ID field indicates if the question is active or deleted. 

That way a question is never completely removed from the database. 

Questions and answers have a many-to-one relationship. The natural extension would 

be to support a many-to-many relationship that would be controlled by the current state of an 

ongoing conversation between the QA system and the client.  

4.7 RESULTS USING THE SYSTEM 

I used search engines to collect URLs leading to university pages with frequently 

asked questions. These searches resulted in a collection of a little more than one hundred 

URLs. After running these URLs through the wizard interface, my knowledge base was 

comprised of a little more than one thousand questions with answers. During this process I 

made minor adjustments so that the questions fit the domain. The resulting knowledge base is 

mainly targeted towards prospective CS majors, and not existing CS students seeking 

answers to CS related problems. 

From initial analysis it seemed that more than 30% of the questions were comprised 

of How type questions. This is as expected.  Students will most likely find factoid type 

answers faster elsewhere. The average length of the collected questions was 9.2 words. The 

full word distribution range can be viewed in Figure 4.11. The distribution shows that very 

few questions have less than five words. In the TREC competition questions were collected 

from various search engines such as MSNSearch and AOL (Voorhees, 2003). The average 

length of questions was 10.2 words (Zaanen, Pizzato, & Moll´a, 2005). The number of words 

in the TREC collection could mean that an ideal knowledge base will benefit from having an 

average question length that is close to ten words. However, the TREC competition questions 

length will be affected to a certain degree by the competition rules of that year. 

If the number of words in a question is too small, the resulting information entropy of 

the question will also be low. Low information entropy will reduce the chance to match the 

question against existing questions in the repository. A very large amount of words in a 

question does not necessarily increase the performance of matching algorithms either. Words 

that differ will usually be penalized in the matching process in such a way that the matching 
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confidence score will be low. This balance is important when performing shallow language 

parsing without complete syntactic understanding.  
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Figure 4.11. Question word count distribution. 

The graph depicted in Figure 4.12 shows the initial unigram distribution of all 

questions in the knowledge base. The distribution shows that how type questions are very 

common. Factoid questions such as when or who type question are not that frequent.  
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Figure 4.12. Distribution of initial unigrams. 

4.7.1 Quality of QA Pairs 

The quality of the collected QA pairs will heavily impact the performance of retrieval 

algorithms later on. I found that the quality of QA pairs varies quite significantly depending 

on what documents they were collected from. Some questions are composed of really long 

sentences that will make them difficult to match against. Some questions were just too short 
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to contain sufficient information to determine a match. Sneiders (1999) writes about the 

quality of question phrases. 

In this paper he describes three features that characterize a good QA pair: 

1. Thorough selection of required and optional keywords. 

2. Good context controlled vocabulary. 

3. Sufficient number of auxiliary entries. 

Sneiders defines required keywords as keywords that have to be part of a question 

before even trying to match. Optional keywords can be part of the question but are not 

required for qualifying a question. Sneiders also states that the vocabulary should tie into the 

context of the question. There should also be a sufficient number of auxiliary entries. 

Auxiliary entries mean that multiple questions lead to the same answer. The QA collection 

system I developed is designed to support a large set of auxiliary entries. The number of 

auxiliary entries will in fact grow as more documents are parsed and the system matures. 

Multiple questions leading to the same answer will suppress any bad influence of questions 

that are badly formatted. Having multiple questions linked to the same answer will also 

suppress the lack of performance a restricted-domain QA system can be exposed to due to 

the lack of co-reference that is widely used in most open-domain QA systems (Morton, 

1999).  

The most noticeable drawback with Sneider’s system is that the required and optional 

keywords are selected manually. This implies that an administrator is initially required to 

invest a lot of time before deploying the system. Based on empirical knowledge derived from 

system logs, the administrator will most likely also have to further adjust the required words. 

4.8 REFINING THE QA KNOWLEDGE BASE  

After examining the initial set of QA pairs in the knowledge base I found a lot of 

spelling errors. There were also many domain specific words that would not be part of a 

common dictionary. These domain specific words were many times spelled differently, e.g. 

MSC, and MS-CS. To keep these inconsistencies would complicate the process of matching 

incoming questions against questions in the knowledge base. To resolve these inconsistencies 

and to normalize the database I implemented the following features to be part of the QA 

system: 
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1. Spell checker. 

2. Global dictionary. 

3. Domain specific dictionary. 

4. Global substitutions. 

5. Domain specific substitutions. 

4.8.1 Spell Checker 

Although spell checkers are uncommon in QA systems they can greatly benefit from 

this feature. In a restricted domain the spell checker can be used to refine the knowledge base 

so that all different terms are correctly spelled. With a spell checker the system can also 

ensure that incoming sentence terms are correctly spelled which in turn increases the 

possibilities of finding correct answers. The spell checker I ended up using is an open source 

project named Jazzy. I wrapped the spell checker in a tool that guides an administrator 

through the entire set of questions. Any time a misspelled word was encountered it would be 

presented to the administrator with associated suggestions on how to correct it. The spell 

checker itself can be instantiated with several different dictionaries. For this initial task I 

wanted a very large dictionary that would cover a big portion if not all of the English 

language. There are several dictionaries and word lists freely available to the public. I used 

the 12dicts which holds approximately 80.000 English words. The spell check process works 

as follows: 

1. Tokenize sentence words. 

2. Remove stop words. 

3. Check each word for misspellings. 

4.8.2 Domain Specific Dictionary 

The domain specific dictionary was also extracted by using the spell checker. All 

domain specific words were flagged as misspellings. After the domain specific dictionary 

had been created it got incorporated into the spell checker so that these words would not be 

flagged in future spell checks. A domain specific dictionary or ontology is a very strong 

feature for restricted QA systems.  
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4.8.3 Global and Domain Substitutions 

To be able to automatically resolve domain specific substitution a substitution table 

was created. With this table substitutions such as MSC and MS-SC can automatically be 

resolved to one common term. A global substitution table (see Table 4.3) was also created. 

The global substitutions mostly consist of truncated words such as: 

Table 4.3. Example of Global Substitutions 

Term Substitution 

what’s what is 

who’s who is 

how’s how is 

couldn’t could not 

 

The normalization of the existing QA knowledge base is also implemented as an 

automated process where the administrator will be presented with suggested substitutions if a 

question is encountered that is not fully normalized. 

4.9 EXTENDING THE QA KNOWLEDGE BASE  

When trying to match questions against existing QA pairs in the knowledge base, it is 

important to have many auxiliary questions. These auxiliary questions are linked to the same 

answer but should all be formulated somewhat differently. 

• Why do I need a master’s degree? 

• Can you give me a reason why I should pursue a master in computer science? 

• Why get a graduate degree in computer science? 

In the examples above we can see that not only is the MS degree formulated 

differently but the questions are not similar at all. This will increase the chances of a possible 

match. Extending the knowledge base this way can either be done manually by the people 

maintaining the system, or by some automated way that rephrases existing questions. It is 

difficult to rewrite questions efficiently without a complete comprehension of the English 

language. The approach I took was to write an automated system to translate questions from 

English to an intermittent language, and then back to English again. An example on how 
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sentences get rephrased can be seen in Table 4.4. The idea is that for most translation 

services this process will render a slightly different sentence than the original.  

Table 4.4. Rephrasing Questions through Translation 

Language Question 

English How do I contact my advisor? 

German How do I approach my advisor? 

Chinese Simpl. How do I relate with mine consultant? 

Dutch How do I contact my consultant? 

French How do I contact my adviser? 

Italian How I put myself in contact with my councilman? 

Japanese Do I how communicate to my advisor? 

Russian How I will be connected my adviser? 

 

In this manner, I can obtain a training set with the size of the knowledge base times 

the number of languages used. The translation services I used for this task is provided by 

Systrans, and Google. Most Anglo-Saxon languages provide quality translation when 

questions are rephrased. However, some other languages might actually degrade system 

performance because of badly formatted sentences. To avoid badly formatted sentences, the 

system needs to verify the syntactic accuracy of a sentence. This can be done in several 

different ways. I decided to post n-grams to Google to determine if the word combination 

exists. This is far from a scientific approach but it does provide a crude way to determine 

accuracy. To determine how well this would work I tried this approach on the existing 

knowledge base. Bigrams, trigrams, and quadrigrams were used for the test. The results can 

be viewed in Figure 4.13.  

When performing this type of verification one will rely on the notion that web 

documents are always formatted correctly. This of course is not true. If the sentence being 

tested is worded slightly wrong, there is a high possibility that someone else made the same 

mistake. If an n-gram is worded incorrectly within any content that has been indexed by the 

search engine it will be flagged as valid. Any domain specific words included in an n-gram 

will also increase the chances of failing verification. When analyzing the results, the bigram 
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test qualifies the most of the questions as valid (98%). The Trigram test produces almost the 

same result as the bigram test, but when using quadrigrams the results dropped significantly. 

When looking at the quadrigrams that failed, I discovered that most of them fail due to 

domain specific words. The other portion of quadrigrams that failed was due to badly 

formatted questions in the existing knowledge base. Quadrigrams failing due to domain 

specific words could be solved by constructing a domain specific ontology. This would 

mirror WordNet where the hypernym would replace the domain specific term. This way 

SDSU (San Diego State University) would be replaced with college. However, 84% is still 

sufficient to produce a large enough amount of auxiliary questions. Another way to limit the 

number of badly formatted questions would be to limit the search to use trusted sources such 

as dictionaries and lexicons.  
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Figure 4.13. Results for knowledge base n-gram verification. 

When analyzing the quadrigrams that passed the verification, most of them were 

correctly worded. This shows that quadrigrams will limit the search results sufficiently to 

avoid most of the badly formatted phrases. As the amount of indexed pages grow the n-gram 

might have to be increased to limit the amount of badly formatted sentences. When analyzing 

the results, it is apparent that the search misses has an exponential trend. This would limit the 

problem of badly formatted sentences when more searchable content is indexed.  
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After using five different languages with n-gram verification, I was able to extend the 

knowledge base 2.29 times its original size. The number of n-grams that failed was highly 

dependent on what language was being used. This can be seen in Figure 4.14.  
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Figure 4.14. N-gram verification results across different languages. 

Shorter questions tend to have a much greater chance of generating a correct 

rephrased sentence. Almost none of the longer questions were translated correctly. 

4.10 ADMINISTRATION INTERFACE 

To make it easier for an Administrator to manage the ContextQA system there is also 

an administrative interface available. This interface is described in more detail in 

Appendix B. Having a useful administration interface is very important. It is especially 

important to have search capabilities that closely match that of the main QA system. This 

way an Administrator can analyze logs and quickly perform the same type of searches to find 

answers that might require additional auxiliary questions. 
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CHAPTER 5 

CONTEXTQA SYSTEM 

From a high level view the ContextQA system is built up by three different parts 

which are depicted in Figure 5.1. These three parts are the client software, the web server, 

and the database. This design is comparable with most web applications. The client software 

and the database system are both insignificant in comparison with the amount of logic 

implemented in the application server. 

 

 

Figure 5.1. ContextQA system. 

5.1 CLIENT 

The QA client is implemented as a flash application. The flash client communicates 

with QA services running on the application server by using XML requests that are sent over 

HTTP. This way the client only needs to be retrieved once from the application server. The 

interface never needs to be refreshed as regular HTML applications. Light weight queries and 

responses are transmitted between the client and the services residing on the application 

server to make the application quick and responsive. When the client is first instantiated the 

user is prompted to input a name. The name is recorded so that more interactive and personal 

communication can be done throughout the session. The main client interface is then shown 

which includes an input row where questions can be entered and a main window where 

responses to questions are presented; see Figure 5.2. In addition to the response a set of 

related questions will also be presented in a window at the bottom of the screen. Related 

questions are determined by the questions that receive a high confidence when the QA 
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system matches the original question against questions in the repository. Any of these related 

questions can be selected and sent back to the system as a new question. This is an efficient 

way to make sure the QA system always presents something related to the user question. 

 

 
Figure 5.2. ContextQA client interface. 

5.2 APPLICATION SERVER 

The application server contains various services that can respond to client requests. 

These services share the client session. There are also several sub-systems that are 

instantiated at the point the application server is brought online. One of these sub-systems is 

A.L.I.C.E which is used as the fallback conversational system when no matching questions 

are found by the QA system. The main service that is called by the client continuously is the 



 

 

67

service that handles incoming questions. This service will refine incoming questions and pass 

them to the QA agent implementation. The QA agent implementation then returns a set of 

QA pairs with associated confidence scores. Each agent also supplies its own confidence cut-

off score that will indicate whether or not to present the answer has sufficient confidence to 

be presented to the user. The process is described in Figure 5.3. 
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Figure 5.3. High level process flow of the ContextQA system. 

5.3 DATABASE 

The database holds several resources that are mainly used by the QA agent 

implementations. The database holds global and domain dictionaries, substitution tables, stop 

word lists, etc. Common task for all agents are to use refined database indexes for performing 

fast lookups to get candidate QA pairs. Resolving candidate questions is described in more 

detail in the system evaluation section.  
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CHAPTER 6 

SYSTEM EVALUATION AND RESULTS 

This chapter provides an in depth analysis using different QA algorithms for the 

restricted-domain QA system developed for the ContextQA system. 

6.1 MEASURING RESULTS 

To accurately measure the performance of a QA system you need metrics that can 

provide a good indication on how the system would perform in a real world scenario. In QA 

it is important to retrieve documents that contain the answers or part of the answer that will 

satisfy the user question. In the ContextQA system where the knowledge base is constructed 

by QA pairs, it is important to retrieve questions that match what the user writes. The 

precision and recall parameters are the most commonly used indicators to measure IR 

retrieval quality Salton and McGill (1983), and Rijsbergen (1979). Rijsbergen defines 

precision as the proportion of relevant material actually retrieved in answer to a search 

request. The precision parameter describes the relation between the number of relevant 

documents and the total number of documents returned from a user query (see Figure 6.1). 

 

 
Figure 6.1. Precision and recall. 

Given that |Rr| are the number of relevant documents retrieved, and |Ri| are the 

number of irrelevant documents retrieved, the precision is given by the following equation:  
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Rijsbergen (1979) defines recall as the proportion of retrieved material that is 

actually relevant. Recall describes the relation between the number of relevant documents 

that were retrieved |Rr|, and the number of relevant document that was not retrieved |Nr|. 
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The recall and precision parameters are usually inversely related. A high recall 

number will result in a low precision number and vice versa. A traditional IR system will try 

to maximize both recall and precision. In my scenario, I am trying to retrieve questions that 

match the user question. In this manner, the goal is slightly different. I need to maximize the 

recall parameter in the first IR step of the QA pipe line. This is done so that the question 

matching algorithm has as much relevant data to work with as possible. In my scenario, I 

want to have a recall number close to 100% when retrieving the first set of questions to 

evaluate.  If the recall value is low, this will hinder any type of matching algorithm, 

especially those relying on auxiliary questions leading to the same answer. The bad results 

will then propagate through the entire QA pipeline. An easy way to improve the recall rate 

would be to retrieve as many QA pairs as possible. Some restricted-domain QA systems 

evaluate all documents in the knowledge base. Retrieving all documents is not a good idea 

because it hinders the system to scale efficiently when adding more complexity. An example 

would be a system intensive matching algorithm.  

One algorithm used in the TREC QA competition is the Mean Reciprocal Ranking 

(MRR) algorithm. The MRR algorithm considers the rank of the first correct answer in a list 

of possible answers. If a system returns the correct answer first in the list it retrieves a 100% 

score. If the correct answer is in the fifth slot it retrieves a 20% score. The reciprocal rank 

has several advantages as a scoring metric. It is closely related to the average precision 
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measure used extensively in document retrieval. It is bounded between 0 and 1, inclusive, 

and averages well (Voorhees, 1999).  

Another important aspect when measuring QA systems performance is the ability to 

determine if an answer does not exist. It is always more important to be able to determine the 

non existence of an answer than to provide an answer that is faulty.  

There have also been several additional methods developed on how to measure the 

performance of QA systems (Breck et al., 2001; Radev, Qi, Wu, & Fan, 2002). These 

methods are more geared toward the specifics of a QA system than those that are used to 

measure standard IR performance. Things like a systems response should also play a role in 

determining the overall system performance. In a QA system the response time should be 

instant but many times it is not. 

6.1.1 The Importance of a Good Test Collection 

When developing a document classification system, the test collection can usually be 

obtained by extracting a portion of the already classified documents. Given the QA 

knowledge base a certain amount of the auxiliary questions that are linked to the unique 

answers could be extracted to build such a test collection. However, this would provide a bias 

towards the content of the knowledge base. Even a trivial restricted-domain requires a 

significant number of questions to not become completely useless. This is why it is important 

to test the system using domain related questions obtained elsewhere. An unbiased test 

collection would be a set of NL questions that relates to the restricted-domain but were 

formulated completely independently of any knowledge of the QA system. To obtain such a 

set of questions I ran the same question collection process that I used when building the 

initial knowledge base excluding the last step where the questions and answers are 

incorporated in the knowledge base. This way I was able to collect a complete set of 

unrefined questions that you would expect actual clients would write. Each of these questions 

has one of two distinct features. Either an answer exists, or does not exist in the knowledge 

base. This way metrics can be provided on how good the QA system is able to determine if 

an answer exists or not. This is one of the metrics to measure QA performance included in 

the TREC competition (Voorhees, 1999). Excerpts from the test collection is provided in 

Appendix C. 



 

 

71

6.1.2 Automated Test Framework 

To be able to quickly determine the quality of an algorithm the ContextQA system 

was equipped with an automated test framework where a new algorithm can be run against 

the test collection and a complete set of metrics are produced. 

6.2 RESOLVING QUESTION CANDIDATES 

When examining the generalized QA system in Figure 2.4, it shows a streamlined 

process where a QA system applies certain logic in each step which will either expand or 

limit the data set that is supplied for the next step. After the question has been analyzed the 

query to retrieve relevant QA pairs is constructed. If any relevant question or answer remains 

unresolved after this step, the error will propagate through the entire system reducing its 

performance. This is why it is important to be able to retrieve as much information as 

possible at this point in the process. The information extracted at this stage will not be visible 

to the user in any way so the precision is not as important as the recall. To maximize recall 

the ContextQA system utilizes an answer index where a large amount of question terms are 

linked to existing answers. This index is constructed by a separate process which iterates 

through each answer in the knowledge base. The following steps are executed for each 

answer: 

1. Resolve all questions leading to the answer. 

2. Remove stop words. 

3. Resolve all term synonyms using WordNet. 

4. Apply Porter stemmer (Porter, 1980) to each term. 

5. Insert resulting terms in index table. 

Given the WordNet synonym term expansion this index becomes very 

comprehensive. Just using unigrams to resolve synonyms can limit the number of synonyms 

when using WordNet because WordNet include n-grams. To accommodate for this, step 

three also includes bigrams and trigrams extracted from the original question to resolve 

synonyms. In step three, the average number of synonyms resolved per question was 27.65. 

Any resulting synonym is broken down into unigrams, and stemmed in step four. 

Because polysemous words can be part of multiple synsets I extract synonyms from 

each synset for all senses. I do this because the system currently does not have any way of 
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determining the word sense (word sense disambiguation) for the word within a sentence. This 

approach could cause problems or decrease performance if the sense is in fact different 

between the questions being compared. However, in restricted domain question answering 

this problem will be limited because the restricted domain will increase the chances that the 

word sense is the same. An example could be the word interest. This word could mean 

interest in taking some course work, or the interest on your bank account. The bank interest 

word sense is unlikely to be part of a restricted domain that deals with giving advice to 

prospective students. Adding additional shallow language parsing logic to the QA system 

will further limit the impact of this potential problem. 

The sole purpose of this index is to retrieve as many potential question candidates as 

possible while still limiting the result to only a subset of all questions. A question answering 

system which would rely only on this mechanism to produce a final set of answers would 

produce poor results from excluding stop words. The value of stemming versus 

morphological query expansion was analyzed in detail by Bilotti, Katz, and Lin (2004). The 

conclusion was the morphological expansion provided better results. The approach taken 

here uses both expansion and stemming. This will increase the recall even further which is 

the main purpose. 

There can also be a drawback when using an index based on stemmed words. Using 

stemming in the process of scoring question candidates can hurt performance. Stemming 

words can change the meaning of a sentence. An example could be the sentence, Name the 

fastest runners. Using the Porter stemmer runners is reduced to runner and the question that 

should produce a list of the fastest runners is reduced to just providing the fastest runner. The 

same goes with stop words. When removing stop words it can also hurt performance. If stop 

words such as Who or When are removed it can limit the meaning of the question. It is 

important to understand when to expand a question phrase and when to reduce it. 

6.3 QUESTION SELECTION AGENTS 

The ContextQA system is implemented in a modular way which allows it to easily 

replace the core set of algorithms that match incoming questions against questions in the 

knowledge base. These algorithms are controlled by an agent. The agent receives a plain text 

question and responds with a list of QA pairs ordered by relevance. Each qa-pair has a 
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confidence score. This confidence score is compared against a cut-off score to determine if 

an answer exists. The cut-off score for the confidence number can be different for different 

agents. If the top rated QA pair falls below the cut-off level this is an indication that the agent 

was unable to find an answer. This is called a NIL response. If the confidence score ranks 

above the cut-off confidence score the answer portion of the QA pair will be presented to the 

user. 

6.3.1 Agent Resources 

Each QA agent has access to various base resources that exist within the knowledge 

base of the ContextQA system. If any other resources are needed the agent can set those up in 

the initialization phase of the system. This section lists the basic resources available to all 

agents. 

6.3.1.1 QUESTION INDEX 

To limit the number of questions that will be evaluated during the matching phase and 

to maximize question recall a lookup table was created. This table maps question words to 

answer ID's. This table is generated when the QA knowledge base has been normalized. 

Before the process is executed the knowledge base is verified to be completely normalized. 

For every question any word or word combination (up to tri-grams) is included if it exists in 

the domain dictionary. The following logical sequence builds the lookup table. 

 

Iterate across each word 

 Remove stop words 

 Extract all possible synonyms from WordNet 

Iterate across each bigram 

 Extract all possible synonyms from WordNet 

Iterate across each trigram 

 Extract all possible synonyms from WordNet 

Create a unique set of synonyms and insert in the synonym answer mapping table. 
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The maximum number of word combinations that could qualify in a sentence of n words is 

expressed below: 

 

 F(0) = 0 

 F(1) = 1 

 F(2) = 3 

 F(n) = 3n - 3 (for n > 2) 

 

However, this situation will be highly unlikely when using free-form questions which will 

almost always include several stop words the longer the sentence is. I evaluated the approach 

to use a stemmer to index the questions but determined that this led to worse results if not 

retrieving a very large collection of potential candidates. Using the raw words and adding 

morphological variations extracted through synsets in WordNet was more efficient. This 

follows in line with what Bilotti and Katz (2004) found. 

6.3.1.2 DOMAIN DICTIONARY 

In a restricted-domain QA system it is very important to have a domain specific 

dictionary. In an open-domain QA system you can usually rely on co-occurrence to 

determine domain specific words. In a restricted-domain system you will not have that luxury 

and especially not when the knowledge base is generating from QA pairs. Each agent has 

access to a domain specific dictionary that can be used for spelling correction or other 

domain specific logic. This domain dictionary was generated by the spelling correction 

process that is part of the ContextQA system. 

6.3.2 Agent Results 

This section presents the results from different agents that all implement different QA 

algorithms. Each agent follows the same model where it receives an NL question and returns 

a set of potential matches. The last agents also provide a confidence level which indicates if 

it was able to find an answer at all. For each agent the same set of performance metrics are 

presented.  
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6.3.2.1 AGENT HOMER 

The Homer agent tokenizes the question entered by the user into a bag of words. The 

resulting bag of words is then used as a query constraint against the existing repository of 

questions in the database. The resulting list of questions is then sorted based on relevance. 

The relevance is determined from the number of words that match words in the original 

question. Having the query be unconstrained result in a significant amount of questions to 

match against for each new question that the agent process.  

6.3.2.2 AGENT HOMER PERFORMANCE METRICS 

Table 6.1 lists the total number of questions, the number of questions were an answer 

exists, and the number of questions that does not have an answer in the repository. 

Table 6.1. Test Collection 

Total test questions 44 

Total test questions where answer exists. 34 

Total test questions where no answer exist (NIL) 10 

 

The following metrics (see Table 6.2) are based on the first answer the agent returns. 

A NIL-answer means that the agent does not think there is an answer available. The Homer 

agent does not have the capability to determine if a question results in a NIL-answer and only 

returns the highest scoring question each time. 

Table 6.2. Agent Homer Performance Metrics 

Correct answers 13 

Incorrect answers 31 

Correct NIL answers 0 

Incorrect NIL answers 0 

Total correct answers 13 

Total incorrect answers 31 

Total correct answers / total questions 0.30 

Average answer response time 290 ms 
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Figure 6.2 shows that this agent has thirteen correct answers at index one. This is the 

most important index because that will be the answer that is produced. The correct answers 

should have as low index as possible 
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Figure 6.2. Agent Homer correct answers per index. 

The MRR score listed in Table 6.3 is good compared to most open-domain qa 

systems. 

Table 6.3. Agent Homer Aggregate Performance Metrics 

Mean Reciprocal Ranking (MRR) 0.60 

Total run time 12.74 seconds 

 

This agent benefits from the fact that database queries are executed on the entire 

knowledge base. This would not be a valid approach in a real-world environment unless the 

system has access to significant resources. The results from this agent show that even with 

limited complexity a restricted domain system can produce results comparable to some of the 

better systems that attend the TREC competition.  

6.3.2.3 AGENT FRY 

The Fry QA agent is similar to the Homer agent except it is utilizing a Porter stemmer 

on each non-stop-word to build the database query. The query is then executed on a WordNet 
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synonym answer mapping table that has been generated previously. The question entered by 

the user goes through several steps of refinement. The question is first tokenized into a list of 

words. The list of words is then normalized based on global substitutions and domain 

specific substitutions. Stop words are removed from the list. Each word is stripped of suffix 

and prefix using the Porter stemmer. The resulting terms are then used as a query constraint 

against the WordNet synonym answer mapping table in the database. This query is limited to 

a maximum of 50 rows. This limitation is introduced to make sure the system is realistic in a 

real world scenario where queries could not be executed against the entire repository of 

questions each time. The Fry agent will rely on this initial IR phase being as good as 

possible. If the sub-set of questions retrieved during this phase does not contain the correct 

answer it does not matter how good the analysis is after that point. That means that any 

question that is not part of the result will not be considered in the subsequent logic. The 

previous agent Homer executed queries against the entire repository which resulted in far 

larger data-sets to consider for possible matches. The Fry agent process the resulting 

questions based on maximum term matching frequency. The results show that even though 

this agent only considers a sub-set of the questions it scores a higher MRR. This shows the 

benefit of the synonym answer mapping table. Due to the limited number of questions to 

compare against the total runtime is also greatly improved compared to the Homer agent. All 

the agents except the Homer agent utilizes the synonym answer mapping table for their initial 

IR phase.  

6.3.2.4 AGENT FRY PERFORMANCE METRICS 

Table 6.4 lists the total number of questions, the number of questions were an answer 

exists, and the number of questions that does not have an answer in the repository. 

The following metrics (see Table 6.5) are based on the first answer the agent returns. 

A NIL-answer means that the agent does not think there is an answer available. The Fry 

agent does not have the capability to determine if a result should be labeled as a NIL-answer. 

Figure 6.3 (p.79) shows that this agent has eighteen correct answers at index one. 

This is the most important index because that will be the answer that is produced. The correct 

answers should have as low index as possible. 
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Table 6.4. Test Collection 

Total test questions 44 

Total test questions where answer exists. 34 

Total test questions where no answer exist 

(NIL) 

10 

 

Table 6.5. Agent Fry Performance Metrics 

Correct answers 18 

Incorrect answers 26 

Correct NIL answers 0 

Incorrect NIL answers 0 

Total correct answers 18 

Total incorrect answers 26 

Total correct answers / total questions 0.41 

Average answer response time 150 ms 

 

The MRR score in Table 6.6 show that the agent scores well compared to most open-

domain qa systems. 

With this agent there has been a significant increase in the number of correct answers 

compared to the previous one. We can also see that the correct answers sharply drop off after 

the first suggested answer which is the ideal behavior. 

Table 6.6. Agent Fry Aggregate Performance Metrics 

Mean Reciprocal Ranking (MRR) 0.71 

Total run time 6.59 seconds 

6.3.2.5 AGENT BENDER 

The Bender QA agent is similar to the Fry QA agent except it extends the portion that 

qualifies the answer by utilizing Levenshtein word edit distance. A confidence limit is also 

set to determine if a NIL answer should be returned. As described earlier being able to 
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Figure 6.3. Agent Fry correct answers per index. 

determine if an answer is not available is very important for a QA system. The system should 

be able to let the user know that it does not know the answer to the question. If the system 

replies with a faulty answer it can damage the user’s confidence in the system or even worse 

the user can damage something else because of the answer. The minimum edit distance is 

measured on the questions after they have gone through a process where they are modified 

for maximum synonym match. WordNet is used to retrieve a list of synonyms for all non 

stop-words in each question. This list is analyzed and both questions are adjusted to match as 

closely as possible based on synonyms or terms that intersect both questions. The confidence 

score is then determined by taking the total number of words minus the edit distance, and 

then divided by the total number of words. The result is a number between 0, and 1. 

What I found with this agent is that if stop words are not included in the edit distance 

calculation the performance is reduced significantly. This is because stop words can have a 

great importance especially in a QA system. If words like Where, and Who are removed the 

meaning of the question is likely to be lost. 

6.3.2.6 AGENT BENDER PERFORMANCE METRICS 

Table 6.7 lists the total number of questions, the number of questions were an answer 

exists, and the number of questions that does not have an answer in the repository. 
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Table 6.7. Test Collection 

Total test questions 44 

Total test questions where answer exists. 34 

Total test questions where no answer exist (NIL) 10 

 

The following metrics (see Table 6.8) are based on the first answer the agent returns. 

With a NIL-answer means that the agent does not think there is an answer available. 

Table 6.8. Agent Bender Performance Metrics 

Correct answers 11 

Incorrect answers 7 

Correct NIL answers 9 

Incorrect NIL answers 17 

Total correct answers 20 

Total incorrect answers 24 

Total correct answers / total questions 0.45 

Average answer response time 3.01 seconds 

 

Figure 6.4 (p. 81) shows that this agent has seventeen correct answers at index one. 

This is the most important index because that will be the answer that is produced. The correct 

answers should have as low index as possible. The MRR score in Table 6.9 shows a slight 

increase since the previous agent. 

Table 6.9. Agent Bender Aggregate Performance Metrics 

Mean Reciprocal Ranking (MRR) 0.72 

Total run time 132.37 seconds 

 

This agent provides a slight step forward in performance compared to the previous 

agent. Given the introduction of a confidence level the agent removes some of the valid 

answers but compensates the total correct answers with its capability to determine if an  
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Figure 6.4. Agent Bender correct answers per index. 

answer is available or not. The MRR score has also been slightly improved because of a 

higher density towards index one in the answers per index table. The limited test collection of 

44 questions will limit the noticeable impact of modifying the algorithm. The impact of a 

small change can easily be misrepresented. Figure 6.5 show a graph which depicts this QA-

agent running with different confidence cut-off levels against the test questions. The chart 

shows many interesting aspects of question answering. The following are the different labels 

associated with the query results: 

• Correct - A correctly answered question. 

• Incorrect - An incorrectly answered question. 

• Correct NIL - A correct answer that states that an answer does not exist in the 
knowledge base. 

• Incorrect NIL - An incorrect answer that states that an answer does not exist in the 
knowledge base. 

The X-axis of the graph represents the confidence cut-off value where the agent considers the 

question to match the question the user inputs. For a very small confidence cut-off such as 1 

the number of questions that match is relatively high ~40%. However, the number of 

questions that are considered to match but in fact are not correct is close to 60%. This is not  
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Figure 6.5. Confidence levels versus query results. 

good performance for a QA-system because 6 out of 10 questions will result in the wrong 

answer. By increasing the confidence cut-off, more questions will start to qualify as NIL. 

This means that the qa-agent does not think there is a matching question and will respond 

with nothing. In the case of the ContextQA system this means that the system will fall back 

to the A.L.I.C.E conversational system. The system will respond with something that 

attempts to continue the conversation with the client. The ContextQA system also show the 

questions that the agent scored with a high confidence score as a list under the main 

interface.  

Another interesting detail is the so called "sweet spot" for the confidence cut-off. This 

cut-off will be different for the type of system that is developed. For example a medical 

system you would never accept an incorrect response. In the above case that cut-off would 

correspond to a 9 or 10 setting. With this setting you would render the system quite unusable 

given all the NIL responses but no patients would be hurt in the process. The above agent is 

set to operate on a level 5 confidence. This level corresponds to a combined NIL and regular 

correct answer rate of 45%. If you include the faulty NIL responses which are adding another 

23% of A.L.I.C.E conversations leaves us with only 20% of faulty responses. These results 

would probably not beat a real student advisor but the results are still good. 

Another thing that would improve the above chart for the ContextQA system is the 

initial search algorithm that is used to determine the candidate set of questions that are used 
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for matching. The recall rate of this algorithm is not considered in the above chart. Only the 

total correct answers that exist in the knowledge base are considered. This means that the 

quality could in fact be improved if more questions were considered. However, the 

responsiveness of the system would degrade linearly with the amount of new questions 

added. I did not want to consider all questions, because I wanted to mirror more of a real-

world scenario where you do not have an infinite amount of resources. 

6.3.2.7 AGENT YODA 

Many of today QA systems have several modules that extract certain features from 

the question and the answer candidates. Given the usually non-linearly separable solutions I 

determined to utilize a set of feature extracting algorithms that would each provide either 

confidence related information or a set of numerical features. These results are then fed into a 

Neural Network which in turn provides a confidence number which determines the final 

rankings of the questions. Limiting the number of hierarchical levels in a set of machine 

learning algorithms is usually a good idea if the training data is not very large. Otherwise the 

lower level algorithms will not receive sufficient data to be able to provide correct 

classifications. The complexity of measuring the effects of combining different question 

matching algorithms grows exponentially harder with the number of techniques used. The 

complexity eliminates the possibility of trying to manually determine the value of combining 

different techniques. The last agent implementation demonstrates that slightly altering some 

values can have a significant impact on the results. Most of today’s QA systems, both open-

domain, and restricted domain are becoming more complex by adding more parts. It is 

difficult to determine the impact of a new algorithm when used in combination with other 

algorithms. This is because the result of a certain algorithm is many times fed as input to the 

next algorithm. Many times when introducing a new algorithm, it affects other details of the 

system based on where they are positioned in the QA system’s pipeline. A widely accepted 

approach when creating a function from a series of observations is using an artificial neural 

network (see Figure 6.6).  

Learning a non-linear multi dimensional function can be taught through supervised 

learning. This is a useful feature given all descriptive metrics can be extracted from all 

previous agents. A neural network also fits the problem because it can model non 
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deterministic and stochastic problems. The input to the neural network within the Yoda agent 

is the same confidence number that drives the decision of the Bender agent. In addition the 

Yoda agent has two more inputs. The full word count difference and the word count 

difference with stop words removed between the two questions that are compared.  

 

 

Figure 6.6. Neural network.  

6.3.2.8 AGENT YODA PERFORMANCE METRICS 

Table 6.10 lists the total number of questions, the number of questions were an 

answer exists, and the number of questions that does not have an answer in the repository. 

The following metrics (see Table 6.11) are based on the first answer the agent returns. 

With a NIL-answer means that the agent does not think there is an answer available. The 

confidence level for the Yoda agent is the direct output from the neural network. The 

confidence level for the Yoda agent had to be set really high to get any type of performance.  

Table 6.10. Test Collection 

Total test questions 44 

Total test questions where answer exists. 34 

Total test questions where no answer exist (NIL) 10 
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Table 6.11. Agent Yoda Performance Metrics 

Correct answers 12 

Incorrect answers 15 

Correct NIL answers 6 

Incorrect NIL answers 11 

Total correct answers 18 

Total incorrect answers 26 

Total correct answers / total questions 0.41 

Average answer response time 3.94 seconds 

 

Figure 6.7 shows that this agent has fifteen correct answers at index one. This is the 

most important index because that will be the answer that is produced. The correct answers 

should have as low index as possible. The MRR shows in Table 6.12 (p. 86) shows a slight 

degradation since the previous agent. 
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Figure 6.7. Agent Yoda correct answers per index. 

The results show that there was degradation in performance compared to the previous 

agent. This shows that adding the additional two indicators used as input to the network did 
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not provide additional data to segment the questions correctly. I still believe that using a 

neural network will be beneficial when adding more ways to classify questions. 

Table 6.12. Agent Yoda Aggregate Performance Metrics 

Mean Reciprocal Ranking (MRR) 0.68 

Total run time 173.51 seconds 

 

6.4 CONCLUSION 

The restricted domain system constructed as part of this thesis fits best in a static 

environment where the answers do not change frequently. This way the system can slowly 

evolve to be more efficient on providing correct answers based on the knowledge base. The 

system would need certain enhancements to better fit in a more dynamic environment where 

the knowledge source changes each day. Such as a quickly expanding source of data or data 

sources from news feeds that are constantly updated. In these scenarios you would need to be 

able to tie answers to external resources that are not statically contained within the system 

itself. An example of this could be results from a test which is stored in a database. If an 

answer node had logic to retrieve data from this database it would be able to construct a 

query based on the question that led to the answer and extract information from that database.  

With the ContextQA system I have shown an efficient way on how to bring open 

domain QA resources to use within a restricted-domain QA system. I have also shown 

throughout the document that you almost certainly will need to develop targeted and trusted 

systems for QA to ensure quality and reliability. The ContextQA system performs equally as 

well as some of the top performing systems in the TREC competition. 
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CHAPTER 7 

FUTURE WORK 

While writing this thesis I have evaluated several possible approaches and topics 

about question answering systems. In this chapter I present some ideas and topics that were 

not researched in detail but could serve as a natural continuation of the work I have started. 

To simplify the ContextQA system even further it should become completely 

automated. This should be a relatively easy task given that the system is already designed 

towards automation. With some minor changes some of the existing manual steps could be 

eliminated. It should be possible to perform web searches within the system. The search 

should be expanded to target FAQ pages that include the terms within the search. When 

qualifying newly found questions the system should show existing repository questions that 

correlate with the new question. By showing similar questions an administrator could 

automatically link new questions to existing answers. When new questions are found they 

should automatically be normalized to fit that of the repository’s domain and common 

dictionaries. When an administrator has collected or entered new questions and answers the 

indexes and resources used by QA Agents should automatically be regenerated. Spell checks 

should be done automatically on new questions. Domain specific words and terms should 

automatically be detected during the collection phase. Extracting these words and terms 

would be done by spell checking and analyzing the existing domain dictionary. Ideally the 

domain dictionary would be extended to cover relationships and include complete restricted 

domain ontology information. The same format as WordNet could be used to expose such a 

feature. 

The system should be extended to support question templates. With question 

templates it easier to answer factoid type questions. An example of a factoid question 

template could be: What is a *. These templates could be extended to support more complex 

wildcards that ties into several question types. Another way to utilize question templates 

would be for query refinement. If the question: What is a golden retriever? Does not result in 

an answer it could be rewritten as What is a dog? This translation could be done by utilizing 
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WordNet’s hypernym relationships. Other templates could be directly tied to database 

queries. Example What are the prerequisites to <class name>? Class name could qualify for 

a set of regular expression matching the different ways to type a class name. These templates 

could be tied to external resources such as databases containing class schedules etc. This way 

the QA system would automatically adjust when these resources are updated. 

Another way to make use of question templates is to use them for query expansion. 

The ContextQA system could qualify a question to match a query template and derive a list 

of alternate way to formulate the same question. Table 7.1 gives an example how the 

following question: How do I apply for graduation can be rewritten. The question qualifier 

would in this case be the regular expression ^How do I. The text following that prefix would 

be considered the question body. 

Utilizing query expansion in this way would benefit the ContextQA system because 

of the way it stores free form questions in its repository. In question answering systems there 

exists a delicate balance weather to expand query terms or refine them. 

Expose further query refinement by tying into A.L.I.C.E context terms. This way it 

could be translated into what thing that has been associated with it earlier in the discussion. 

By rewriting question based on the context of the discussion will increase the illusion of the 

system being intelligent. 

The system should include better logging mechanisms to be able to perform empirical 

studies when running in live environments. 

Given that the system already returns a collection of question candidates sorted on 

relevance the system could suggest question matches if the confidence level is too low. This 

could be done by rewriting the question that scores the highest. Example the following 

question: Describe to me how I signup for courses? Might not result in a match that scores 

high enough. The highest scoring question could be: How do I register for classes? The 

system could then rewrite that question as a suggestion. Do you want to know how you 

register for classes? This would be another way to supply a way for continuous discussion. 

Another way would be to cluster similar questions that lead to different answers. This way 

the system could pose a follow up question when an answer is provided. 
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Table 7.1. Example of Query Template Rephrasing 

Can you let me know how I <question body>? 

Can you let me know how I can <question body>? 

Can you let me know how to <question body>? 

Let me know how I <question body>? 

Let me know how I can <question body>? 

Let me know how to <question body>? 

Can you tell me how I <question body>? 

Can you tell me how I can <question body>? 

Can you tell me how to <question body>? 

Tell me how I <question body>? 

Tell me how I can <question body>? 

Tell me how to <question body>? 

Can you describe how I <question body>? 

Can you describe how I can <question body>? 

Can you describe how to <question body>? 

Describe how I <question body>. 

Describe how I can <question body>. 

Describe how to <question body>. 

Do you know how I <question body>? 

Do you know how I can <question body>? 

Do you know how to <question body>? 

How can I <question body>? 

How do I <question body>? 

How to <question body>? 

I need to know how I <question body>. 

I need to know how I can <question body>. 

I need to know how to <question body>. 
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This could be very interesting because usually a client will continue asking additional 

questions covering the same topic as that of the leading question. The system could even 

learn from client feedback what follow up questions that are likely to occur. An example 

could be a client asking about the price of a product. A common follow up question would be 

where to purchase the product. 

The ContextQA system would greatly benefit from a question typing algorithm. The 

question typing algorithm could be constructed in two parts. One aspect could use common 

aspects of question typing usually geared towards factoid type questions. Another question 

typing algorithm could be targeted towards the restricted domain that the QA system is being 

designed for. I really wanted to include question typing or question classification as it also is 

called as part of the ContextQA system. I would expect the reliability to increase even further 

if this was added. With the addition of question classification it might prove even more 

important to utilize a neural network to determine the importance of a certain algorithm 

output. The question typing algorithm should also be running during the collection of new qa 

pairs. This way the administrator could apply supervised learning to adjust the automatic 

assignment of question types. Jimmy. Lin (J. Lin 2002) shows that when analyzing the types 

of questions available in the 2001 TREC competition there are 50 question types that would 

cover more than 45% of all the questions. This shows that a question typing algorithm can 

efficiently reduce the number of question-answer candidates. Some non-factoid question type 

definitions have been defined by Lehnert (1977). Lehnert’s, question type taxonomies would 

be likely to fit the FAQ style questions better because they are mostly non factual (see 

Table 7.2). The problem is that writing a question classifier for Lehnert’s classes would be 

difficult because they require an understanding of the whole concept of a question. Many if 

not all features of the question would have to be evaluated to determine the proper class. 

Most factual question classifier can focus on factual properties such as time or objects. One 

solution to this problem would be to use a subset of Lehnert’s classes that are more easily 

determined from a sub-set of question features. These classes could then be used in unison 

with a standard set of factoid type classifier to overall improve classifying how and why type 

questions. 
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Table 7.2. Conceptual Question Categories with Examples 

Question Categories Examples 

Causal Antecedent Why did John go to New York? 

What resulted in John’s leaving? 

Goal Orientation For what purposes did John take the book? 

Why did Mary drop the book? 

Enablement How was John able to eat? 

What did John need to do in order to leave? 

Causal Consequent What happened when John left? 

What if I don’t leave? 

Verification Did John leave? 

Did John anything to keep Mary from leaving? 

Disjunctive Was John or Mary here? 

Is John coming or going? 

Instrumental/Procedural How did John go to New York? 

What did John use to eat? 

Concept Completion What did John eat? 

Who gave Mary the book? 

When did John leave Paris? 

Expectational Why didn’t John go to New York? 

Why isn’t John eating? 

Judgmental What should John do to keep Mary from leaving? 

What should John do now? 

Quantification How many people are there? 

How ill was John? 

Feature Specification What color are John’s eyes? 

What breed of dog is Rover? 

Request Would you pass the salt? 

Can you get me my coat? 
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It would also be interesting to further analyze the additional learning capacity that 

translation can have to the existing repository. This was covered to some degree in the thesis 

but could be expanded further. Being able to automatically expand the training set is a very 

attractive approach. 

One final improvement to get better results would be to extend the student advisor 

test collection. As described earlier the current test collection is not sufficiently large to 

accurately detect small improvements or deficiencies in new algorithms. 
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TECHNICAL SPECIFICATIONS  
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TECHNICAL SPECIFICATIONS 

This section describes the technical details of the system hardware used during the 

development of the ContextQA system. This section also describes the software used to run 

the ContextQA system, and software used during development.  

 

HARDWARE 

Hardware Specifications 

OS Windows XP 

CPU AMD Athlon 1.25 Ghz 

Memory 1.0 GB of PC2100 DDR DRAM 

Storage 2 Maxtor 20GB configured in RAID-0 

 

SOFTWARE 

Software Specifications 

Database MySQL-Server 5.0 

The database contains 1091 questions and 756 answers. 

JVM Java J2SDK 1.6 

Webserver Apache Tomcat 6.0 

IDE Eclipse 3.1, and TogetherJ 3.0 

Editor UltraEdit 13.0 

3
rd

 party software Alicebot Program D, WordNet 2.0, Jazzy 1.0 
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APPENDIX B 

QA ADMINISTRATION INTERFACE 
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MAIN INTERFACE 

In the main interface you are presented with two different sections which are 

described below. 

Create New Question 

The first section is designed to add additional question-answer pairs to the knowledge 

base. Two text fields are available, question and answer. If both fields are filled out and the 

“Create” button is clicked the new qa-pair will be inserted into the knowledge base if the 

question does not already exist. 

Search for Questions 

The second section presents a search field, and a table listing questions. Initially the 

search field is blank. This results in all questions being presented in the table. Any search 

terms entered in the search field will result in a Boolean or-condition search. If you search on 

“A B” the result will be A OR B. Any questions containing either A or B or both will show 

up in the list. The table has seven columns. Each of the columns is described below: 
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Main Search Result Table 

Edit This button will cause a popup window to appear where the question 

and its associated answer can be edited. See the edit question 

interface section for additional details. 

Q-ID This is the question ID as it is represented in the QA database. 

QUESTION This is the question sentence. 

A-ID This is the answer ID as it is represented in the QA database. 

#Q/A This column represents the number of questions that are linked to 

the same answer as the question presented in the table row. If this 

column lists only one, it means that this is the only question that 

leads to that answer. The higher the number the better. A high 

number means that several differently formulated questions are 

pointing to the same answer. Many auxiliary questions per answer 

will improve the QA systems matching performance. 

CREATED This is the date when the question was created. The date is formatted 

using the ISO date standard (yyyy-mm-dd). 

UPDATED This is the date when the question was updated. The date is 

formatted using the ISO date standard (yyyy-mm-dd). If the 

question has never been updated this field will be blank. 

 

EDIT QUESTION INTERFACE 

When a question is selected to be edited in the main interface a popup window 

appears. The popup window has several sections which are each described in detail below. 

 

Question / Answer 

 

The question with its associated answer is presented as editable text fields. The question field 

has the following buttons: 
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Question Controls 

Save Will save the current state of the question, close the popup window, 

and bring the user back to the main interface. 

Re-link Option to link the question to a different answer  

This is done by providing a page where all available answers are 

listed. If a new answer is selected the current answer might end up 

being deleted if no other questions are associated to that answer. 

Delete Will delete question and possibly also the answer if no other 

questions are associated to that answer. 

 

The answer text field also has a set of buttons: 

Answer Controls 

Save Will save the current state of the answer, close the popup window, 

and bring the user back to the main interface. 

Close Will close the popup window, and bring the user back to the main 

interface. 

 

The answer also has a check box which indicates whether or not the answer has been verified 
for correctness or not. 

 

Create an Additional Question 

This section includes a field where an additional question can be typed in. If this 

question is submitted, it is linked to the answer that is currently being displayed. 

 

Questions Linked to the Same Answer 

This section presents a table that lists any other questions that are linked to the current 

answer. If there are no other questions linked to the current answer this table will be blank. 

This table also includes edit buttons for each line item, which would bring up the edit 

question interface for that particular question. 
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Similar Questions 

The similar questions section includes a table which lists questions that are similar to 

the question currently being edited. The questions listed in this table are not linked to the 

current answer. Each line item has a link button which will re-link that particular question to 

the current answer. Each table row will also include a column that indicates weather the 

answer that particular question points to have been verified or not. Re-linking questions that 

point to verified answers are not recommended unless the question is being re-linked to 

another answer that also has been verified. 
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APPENDIX C 

TEST QUESTIONS 
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QA TEST QUESTIONS 

The following table lists an excerpt of questions used when testing the different QA 

Agents listed in section Agent Results. Each row has an associated answer ID or a negative 

one if no answer exists in the knowledge repository. These questions were extracted from 

various websites to ensure that they are separate from any data the system has previously 

been tested on. 

Test Questions with Associated Answer ID’s 

Question Answer ID 

Do you offer financial support? 133 

How important is where the student received his bachelor's degree? -1 

How long will a BS take? 148 

What is your minimum GRE requirements? 45 

How do I find out if I am meeting your requirements? -1 

What kind of job do I get if I study computer science? 947 

Does the College assist me in finding a job? 393 

Do you offer a computer repair class? -1 

Do you offer classes online? 1017 

Do you offer classes that corresponds to some industry certificates? -1 

When do classes start? 1018 

Which are the requirements for foreign students? -1 

What is the student visa procedure? 306 

How much do i have to spend per month for accommodation and living 

expenses? 

-1 

How do I get into the lab? 609 

Who is this program for? 780 

How long will it take me to complete the degree? 148 

How much does the program cost? 592 

Do I have to take the GRE? 43 
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The need for more advanced data mining and search engine technologies has been 

steadily increasing since the introduction of the Internet. With the exponential growth of 
information available on the web combined with a public that is becoming more educated in 
search technology, there exists a great need to quickly and efficiently be able to provide results 
for a large range of very specific questions. The current natural language processing is still in a 
primitive state. There is no single solution that will be able to provide quality results to the broad 
range of potential questions by using indexed data extracted from the web. However there exist 
several ways to provide more efficient results. One way is to develop more extensive ways to 
interact with users to target results related to the individual’s specific needs. 

This thesis focuses on a particular field of research that is called Question Answering 
Systems. In Question Answering the system provide answers on plain text questions through 
natural language processing, information retrieval, and data mining on structured or unstructured 
text data. A summary of the research development in this area is provided and also a description 
of how the algorithms and techniques have evolved over time until we are left in the current 
state. 

Furthermore, I conclude that there are many compelling reasons to build more refined 
and targeted knowledge bases. With a targeted knowledgebase and knowledge about an 
individual specific needs, several algorithms can be applied which provides better results and 
efficiency than that of an open-domain question answering system. I show that index based 
search engines are far from providing the same level of accuracy as a restricted-domain QA 
systems. As part of the thesis a complete restricted-domain QA system is developed named 
ContextQA. A series of experiments are conducted where ContextQA is configured to use 
different approaches on restricted-domain question answering algorithms. The results show that 
high accuracy can be obtained within a restricted-domain with limited resources. 


