
CONTEXTQA: EXPERIMENTS IN INTERACTIVE RESTRICTED-

DOMAIN QUESTION ANSWERING

A Thesis

Presented to the

Faculty of

San Diego State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

Martin Erik Liljenback

Fall 2007

SAN DIEGO STATE UNIVERSITY

The Undersigned Faculty Committee Approves the

Thesis of Martin Erik Liljenback:

ContextQA: Experiments in Interactive Restricted-Domain Question Answering

 __
John Donald, Chair

Department of Computer Science

 __
Joseph Lewis

Department of Computer Science

 __
Jean Marc Gawron

Department of Linguistics and Asian/Middle Eastern Languages

 Approval Date

iii

Copyright © 2007

by

Martin Erik Liljenback

All Rights Reserved

iv

DEDICATION

I dedicate this work to my wife Wendy. Without her tremendous amount of love and

support I doubt this would have been possible.

v

ABSTRACT OF THE THESIS

ContextQA: Experiments in Interactive Restricted-Domain
Question Answering

by
Martin Erik Liljenback

Master of Science in Computer Science
San Diego State University, 2007

The need for more advanced data mining and search engine technologies has been
steadily increasing since the introduction of the Internet. With the exponential growth of
information available on the web combined with a public that is becoming more educated in
search technology, there exists a great need to quickly and efficiently be able to provide
results for a large range of very specific questions. The current natural language processing is
still in a primitive state. There is no single solution that will be able to provide quality results
to the broad range of potential questions by using indexed data extracted from the web.
However there exist several ways to provide more efficient results. One way is to develop
more extensive ways to interact with users to target results related to the individual’s specific
needs.

This thesis focuses on a particular field of research that is called Question Answering
Systems. In Question Answering the system provide answers on plain text questions through
natural language processing, information retrieval, and data mining on structured or
unstructured text data. A summary of the research development in this area is provided and
also a description of how the algorithms and techniques have evolved over time until we are
left in the current state.

Furthermore, I conclude that there are many compelling reasons to build more refined
and targeted knowledge bases. With a targeted knowledgebase and knowledge about an
individual specific needs, several algorithms can be applied which provides better results and
efficiency than that of an open-domain question answering system. I show that index based
search engines are far from providing the same level of accuracy as a restricted-domain QA
systems. As part of the thesis a complete restricted-domain QA system is developed named
ContextQA. A series of experiments are conducted where ContextQA is configured to use
different approaches on restricted-domain question answering algorithms. The results show
that high accuracy can be obtained within a restricted-domain with limited resources.

vi

TABLE OF CONTENTS

PAGE

ABSTRACT .. v

LIST OF TABLES .. x

LIST OF FIGURES .. xi

ACKNOWLEDGEMENTS ... xiii

CHAPTER

1 INTRODUCTION ... 1

1.1 Chapter Organization .. 1

1.1.1 Introduction .. 2

1.1.2 Background .. 2

1.1.3 System Design .. 2

1.1.4 Building a Targeted Knowledge Base .. 2

1.1.5 ContextQA System ... 3

1.1.6 System Evaluations and Results ... 3

1.1.7 Future Enhancements ... 3

1.2 Contributions of This Thesis ... 3

2 BACKGROUND ... 4

2.1 Early Question Answering Utilizing Networked Computers 4

2.2 Frequently Asked Questions ... 6

2.2.1 Expert Inquiry Systems .. 7

2.2.2 Historical Limitations ... 7

2.3 Question Answering Systems.. 9

2.3.1 Generalized Question Answering Architecture...................................... 12

2.3.1.1 User Interface .. 12

2.3.1.2 Question Analyzer ... 13

2.3.1.3 Data Retrieval .. 13

2.3.1.4 Answer Extraction ... 14

2.3.1.5 Ranking ... 14

vii

2.3.1.6 Answer Verification .. 14

2.3.2 History of Question Answering.. 15

2.3.3 Question Answering Roadmap... 18

2.4 Open-Domain QA versus Restricted-Domain QA .. 19

2.4.1 Benefits in Open-Domain... 21

2.4.1.1 Automatically Updated ... 22

2.4.1.2 Broad Coverage ... 22

2.4.1.3 Comprehensive Research Available.. 22

2.4.2 Limitations in Open-Domain ... 22

2.4.2.1 Large.. 23

2.4.2.2 Content Quality ... 24

2.4.2.3 Inaccurate Conflicting Data .. 24

2.4.2.4 Maintenance .. 25

2.4.3 Benefits in Restricted-Domain ... 26

2.4.3.1 Technical Terms .. 26

2.4.3.2 Accuracy in Understanding Content Words.................................. 26

2.4.3.3 Specialized Vocabulary ... 27

2.4.3.4 Access to Domain Specific Linguistic Resources 27

2.4.3.5 Structuring of the Knowledge Base .. 27

2.4.3.6 Quality and Reliability .. 28

2.4.3.7 Answer Formatting .. 28

2.4.4 Limitations in Restricted-Domain .. 29

2.4.4.1 Scarcity of Data ... 29

2.4.4.2 Complexity of Questions ... 29

2.4.4.3 Complexity of Answers ... 29

2.4.4.4. Evaluation of Restricted-Domain QA .. 30

2.4.4.5 Cost of Maintenance.. 30

2.5 The Challenges of Question Answering Systems ... 31

2.6 Attractive Market .. 33

3 SYSTEM DESIGN ... 34

3.1 Limiting the Problem Scope .. 34

3.1.1 Restricted Domain QA ... 34

viii

3.1.2 Shallow Language Understanding ... 35

3.1.3 Completeness of Answers .. 35

3.2 Advanced Concepts ... 36

3.2.1 Interactive QA .. 36

3.2.2 Automation ... 38

3.2.3 Responsiveness... 39

3.3 Previous Work ... 39

4 BUILDING A TARGETED KNOWLEDGE BASE .. 41

4.1 Question Harvesting System ... 43

4.2 System Design ... 43

4.3 Controller Servlet .. 44

4.4 Wizard Interface .. 46

4.4.1 Wizard Interface Step One ... 46

4.4.2 Wizard Interface Step Two .. 47

4.4.3 Wizard Interface Step Three .. 47

4.5 Document Parser ... 49

4.5.1 Parser Design.. 49

4.6 QA Database Schema .. 56

4.7 Results Using the System .. 57

4.7.1 Quality of QA Pairs .. 58

4.8 Refining the QA Knowledge Base .. 59

4.8.1 Spell Checker ... 60

4.8.2 Domain Specific Dictionary ... 60

4.8.3 Global and Domain Substitutions .. 61

4.9 Extending the QA Knowledge Base.. 61

4.10 Administration Interface ... 64

5 CONTEXTQA SYSTEM .. 65

5.1 Client ... 65

5.2 Application Server... 66

5.3 Database .. 67

6 SYSTEM EVALUATION AND RESULTS .. 68

6.1 Measuring Results ... 68

ix

6.1.1 The Importance of a Good Test Collection .. 70

6.1.2 Automated Test Framework ... 71

6.2 Resolving Question Candidates .. 71

6.3 Question Selection Agents .. 72

6.3.1 Agent Resources ... 73

6.3.1.1 Question Index .. 73

6.3.1.2 Domain Dictionary .. 74

6.3.2 Agent Results ... 74

6.3.2.1 Agent Homer ... 75

6.3.2.2 Agent Homer Performance Metrics .. 75

6.3.2.3 Agent Fry... 76

6.3.2.4 Agent Fry Performance Metrics .. 77

6.3.2.5 Agent Bender... 78

6.3.2.6 Agent Bender Performance Metrics .. 79

6.3.2.7 Agent Yoda ... 83

6.3.2.8 Agent Yoda Performance Metrics ... 84

6.4 Conclusion ... 86

7 FUTURE WORK .. 87

APPENDIX

A TECHNICAL SPECIFICATIONS ... 98

B QA ADMINISTRATION INTERFACE .. 100

C TEST QUESTIONS .. 105

x

LIST OF TABLES

 PAGE

Table 2.1. Example of Answer Extraction from Multiple Sources ... 20

Table 4.1. Distribution of TREC QA Track Question Types .. 43

Table 4.2. Text Parser Features ... 51

Table 4.3. Example of Global Substitutions ... 61

Table 4.4. Rephrasing Questions through Translation .. 62

Table 6.1. Test Collection ... 75

Table 6.2. Agent Homer Performance Metrics ... 75

Table 6.3. Agent Homer Aggregate Performance Metrics .. 76

Table 6.4. Test Collection ... 78

Table 6.5. Agent Fry Performance Metrics ... 78

Table 6.6. Agent Fry Aggregate Performance Metrics ... 78

Table 6.7. Test Collection ... 80

Table 6.8. Agent Bender Performance Metrics ... 80

Table 6.9. Agent Bender Aggregate Performance Metrics ... 80

Table 6.10. Test Collection ... 84

Table 6.11. Agent Yoda Performance Metrics .. 85

Table 6.12. Agent Yoda Aggregate Performance Metrics .. 86

Table 7.1. Example of Query Template Rephrasing ... 89

Table 7.2. Conceptual Question Categories with Examples ... 91

xi

LIST OF FIGURES

 PAGE

Figure 2.1. Networked computers sharing bulletin board systems. .. 5

Figure 2.2. Different questions leading to the same answer. .. 8

Figure 2.3. Information retrieval system. .. 10

Figure 2.4. Generalized question answering architecture. .. 12

Figure 2.5. Intersecting QA research fields... 32

Figure 3.1. A.L.I.C.E tree structure. .. 37

Figure 4.1. MVC software architecture. .. 44

Figure 4.2. Controller Servlet UML diagram. ... 45

Figure 4.3. Step one of the FAQ parser wizard. .. 47

Figure 4.4. Step two of the FAQ parser wizard. ... 48

Figure 4.5. Step three of the FAQ parser wizard. ... 48

Figure 4.6. FAQ parser classes.. 50

Figure 4.7. Program flow diagram for the FAQ parser. .. 52

Figure 4.8. Program flow chart for the extract-question method. ... 54

Figure 4.9. Question and answer container classes. .. 55

Figure 4.10. QA database ER diagram. ... 56

Figure 4.11. Question word count distribution. .. 58

Figure 4.12. Distribution of initial unigrams. ... 58

Figure 4.13. Results for knowledge base n-gram verification. ... 63

Figure 4.14. N-gram verification results across different languages. 64

Figure 5.1. ContextQA system. ... 65

Figure 5.2. ContextQA client interface. .. 66

Figure 5.3. High level process flow of the ContextQA system... 67

Figure 6.1. Precision and recall. .. 68

Figure 6.2. Agent Homer correct answers per index... 76

Figure 6.3. Agent Fry correct answers per index. ... 79

Figure 6.4. Agent Bender correct answers per index. ... 81

xii

Figure 6.5. Confidence levels versus query results. .. 82

Figure 6.6. Neural network. .. 84

Figure 6.7. Agent Yoda correct answers per index. .. 85

xiii

ACKNOWLEDGEMENTS

I want to acknowledge my thesis chair Dr. Donald. Dr. Donald has always

encouraged me in my work. I would also like to thank Dr. Gawron, and Dr. Lewis for

supporting me in this work and being part of my thesis committee. I want to acknowledge the

Google team behind Google Scholar. Great job guys, now there is no excuse for anyone not

to stand on the shoulders of giants.

1

CHAPTER 1

INTRODUCTION

The history of question answering goes far beyond computer software systems. One

of the most powerful ways to learn is by asking questions of someone that has an intimate

knowledge in the field that you are interested in learning about. There is a period while

growing up when we frequently ask our parents questions about everything in our

surroundings so that we can build up knowledge about the world we live in. In many schools

teachers now practice inquiry based learning. This has many times proven itself to be a more

powerful way to learn as indicated by Harlen (2004). Inquiry based learning is a different

approach rather than older style teaching where students mostly listen and document what the

teacher is saying. One reason why inquiry based learning has not previously been practiced

that widely is because it requires a lot of interaction with individual students. With the

introduction of the internet students can now practice inquiry based learning by using online

resources. Question answering systems would provide a very powerful way to practice

inquiry based learning.

Computers most common task is to quickly process large amounts of information to

solve different types of logical problems. Another way to word this is that we use computers

to provide us with answers to problems that are considered too hard or time consuming for us

to process by hand. We interact with computers through graphical and hardware user

interfaces such as using a keyboard and a mouse to control a software application while

reading results on a monitor. These types of interfaces have evolved to become rather

sophisticated throughout the years, but they still do not compare to how we interact with

other people while asking questions. Question answering systems are a step in that direction.

1.1 CHAPTER ORGANIZATION

This section contains a brief summary on the contents of each chapter. These

summaries give an overview on how the thesis document is organized.

2

1.1.1 Introduction

In this chapter I describe what my goals are and what I plan to accomplish. The

chapter gives a short description of Question Answering systems. Furthermore, I describe the

need and value these systems provide to our community. In addition, this chapter includes an

outline of the entire document.

1.1.2 Background

There is a comprehensive description on the history of question answering and how it

has evolved since the inception of computers and computer networking. A roadmap of future

work in this field is presented and discussed. The need of question answering systems is

described throughout this chapter. This chapter holds some detailed information on how a

generalized question answering system architecture can be constructed. The different sub-

systems in a question answering system are described. There is an in depth analysis of open-

domain question answering systems versus restricted-domain question answering. In this

section I show some of the clear benefits of using restricted domain question answering

systems. This chapter also contains a section describing the complexities of question

answering and what makes it one of the hardest problems to solve. The chapter is completed

with a section where I describe the potential market of question answering and that the

reasons why companies keep on funding projects to develop question answering systems.

1.1.3 System Design

This chapter describes how I choose to tackle some of the problems so that I could

obtain the goals I had set out to reach with this thesis. I list some of the previous work within

restricted question answering and give an idea on what needs to be tackled next.

1.1.4 Building a Targeted Knowledge Base

In this chapter I cover the work I did when trying to automate the knowledge building

phase by using open-domain resources in obtaining a restricted domain question answering

knowledge base. By extracting QA-pairs from online frequently asked questions pages a

knowledge base is constructed. The work refining this knowledge base is described in some

detail and various metrics on the final knowledge repository are also provided. A novel

3

approach of extending an existing knowledge repository within question answering using

translation to other languages is discussed and results are provided.

1.1.5 ContextQA System

The system design of the question answering system that I constructed for this thesis

is described in this chapter. The framework, resources, and the way algorithms where

implemented is covered.

1.1.6 System Evaluations and Results

This chapter provides results and findings from several different question answering

algorithms that were run through a test collection within the ContextQA system.

1.1.7 Future Enhancements

In this chapter I write about topics that were not covered in my work but would serve

as a natural continuation of it. I write about what I believe is the correct way of implementing

an open-domain question answering system using the features and advantages you obtain

within restricted domain question answering.

1.2 CONTRIBUTIONS OF THIS THESIS

The main objectives and contributions of this thesis are listed below:

• Provide an overview on the past and present state of Question Answering and
different approaches on how to solve the problem.

• Discuss and show the benefits of an interactive restricted-domain Question
Answering System.

• Build a refined knowledge base that can be used as a resource for future research
work on Question Answering at San Diego State University.

• Research, design and implement a fully working restricted-domain Question
Answering System.

• Present the performance of different algorithms in a QA system implementation.

4

CHAPTER 2

BACKGROUND

This chapter describes the history of Question Answering. A common Question

Answering architecture is presented. Open domains versus restricted domain question

answering systems are described in depth.

2.1 EARLY QUESTION ANSWERING UTILIZING

NETWORKED COMPUTERS

Providing answers to questions across networked computers was first introduced by

the use of bulletin board systems (BBS). These types of systems were hosted on computers

connected to the phone network. Bulletin board systems were popular during the 1970s and

1980s especially in Europe. The servers hosting the bulletin boards used different methods

and protocols to synchronize messages such as FidoNet (Bush, 1995). By utilizing these

types of protocols messages entered on one server could be distributed to all the other servers

that were part of the network. These servers were accessible through local phone numbers

using modems as seen in Figure 2.1. By synchronizing servers questions got a lot more

exposure than if only hosted on one single machine. The questions and knowledge exchange

in these early networks were mostly computer science related. At the point when the internet

started to become more widely adopted a similar system was developed named UseNet.

UseNet was a set of news servers connected in a somewhat organized network. Today

UseNet spans most of the globe and is still very actively utilized. The connected servers

communicate using NNTP (Network News Transfer Protocol) (Kantor, & Lapsley, 1986).

This system gained popularity very quickly after it was introduced. The amount of articles,

questions and answers grew exponentially and today news servers are considered a major

knowledge resource for almost any type of information. Various companies such as Google

among others have realized that indexing this type of information can be a very powerful

resource. The information available in these archives consists mostly of people submitting

questions that other users get a chance to answer.

5

Figure 2.1. Networked computers sharing bulletin board systems.

This way a user can perform keyword searches to quickly locate postings containing

answers to common questions. Searching for answers for more specific questions this way

usually takes some work by analyzing resulting articles. It also takes some practice knowing

what keywords to use to get quality results. Answers to questions that are not that common

are much harder to find using this method and the result will usually not guarantee a correct

answer. Ideally a user would be presented with one single answer instead of a list of

documents. The resulting relevant documents might not even contain the answer, or might

contain false answers. When viewing logs from popular search engines approximately 15%

of all queries posted are fully formulated questions. The following might be some examples

of the type of questions people submit to search engines:

• What are the top rated colleges in the UK?

• How do I lose weight?

• Where can I buy quality headsets?

• How many kilograms are five pounds?

• What does bilingual mean?

In a related work, Radev, Libner, and Fan (2002) concludes that when posting

complete questions to search engines correct answers are only found three fourths of the time

within the first forty results returned. This shows that there is a great need to provide more

6

precise answers instead of a list of links to documents that potentially hold the answer.

However, the quality of the results for plain text questions is likely to degrade even further if

QA systems do not become an integral part of regular search engine technology any time

soon. The reason for this is that it is usually better to type in several well thought out

keywords that correspond to the question context. Plain text questions tend to generate poor

results and are even discouraged by certain search engines.

2.2 FREQUENTLY ASKED QUESTIONS

One popular way of sharing inquiry based information on the internet is by listing

frequently asked questions (FAQ) and their answers on web pages or in text documents. The

FAQ originated as a text medium on ARPAnet mailing lists and later FAQs became available

on UseNet in the form of "*.answers" moderated newsgroups. Many internet based

organizations and corporations will first direct clients to read through a publicly available

FAQ before being able to submit questions to support personnel. This limits the amount of

redundant questions and reduces the resources spent on support personnel.

A FAQ has several drawbacks when compared to an interactive QA system. If the

FAQ is too small, the questions will most likely not cover enough of the topic. The positive

aspect of this is that it becomes easier to quickly read through the FAQ to determine if the

question is covered or not. A large FAQ on the other hand can be intimidating to read

through and is not always guaranteed to provide the correct answer either. Sometimes larger

FAQs will be covered on several documents. This can provide some structural advantages

but makes it harder to search for specific keywords relating to a question. Another problem

with a static FAQ is that there is no straightforward way for an administrator to find out what

types of questions clients have. This can be solved by providing some sort of feedback such

as email, but usually a client will want the question answered right away and will search

elsewhere for an answer before submitting any feedback. If feedback were to be provided an

administrator could theoretically refine the FAQ based on empirical knowledge on what

types of questions are submitted the most. The FAQ is still today the most common way to

provide answers to common questions online. However one of the greatest drawbacks with

static FAQs is that the client is not given the option to ask free form questions but is forced to

re-phrase the question so that it matches what might be available.

7

2.2.1 Expert Inquiry Systems

Another common way to provide answers online is by having a staff of experts whose

job it is to answer client’s questions. These types of systems are geared more towards

knowledge bases covering specific topics. An example would be questions on how to invest

your money or how to write programs for computers. Many of the leading search engine

companies now provide experts that can answer or research more complex questions. This is

another indication that the public many times searches for specific answers that cannot be

found or are hard to find given the indexed content available through search engines. These

services usually come with a small fee as can be seen on Google Answers. There also exist

several free systems such as Expert Exchange where authors instead of charging for their

services get awarded virtual points for answering questions. These free systems usually cover

common topics and have a growing community of people giving free advice.

2.2.2 Historical Limitations

The systems described up until now are greatly limited by either their interface or

their cost. They also require constant maintenance by people or have a limited number of

statically defined questions and answers. The flexibility of these types of systems is therefore

limited. When questions are submitted to a system that is maintained by people, one or more

might answer or none at all. If an answer is provided, it will not be provided instantly.

Usually it takes one or more days before an answer becomes available. In the systems

described so far it is also tedious to find existing answers even if the question has previously

been submitted and an answer already exists. The reason for this as stated previously is that

there are so many different ways to formulate questions that lead to the same answer. An

example of this is depicted in Figure 2.2. One good reason to create a system that can

automatically answer questions is due to the massive amount of online information that is

publicly accessible today. There is however no solid standard on how to organize this

information or how to organize systems that are designed to provide answers to questions.

The information available online is usually not organized very well which makes it hard to

manually search for answers with specific contexts. In an automatic QA system manual

searching is not required. All the complexity that is required to provide an answer is instead

8

implemented in the system layer. In a QA system the answer is (or at least should be)

provided in real-time.

Figure 2.2. Different questions leading to the same answer.

A massive amount of resources has been spent and is actively being spent on research

and development in this area. Designing an automated QA system is not in any way a novel

idea, but it is not until recently that it has started to become more commercially feasible to

do. One reason is the cheap storage and processing power that is now available. There has

also been a lot of progress in developing parallel computing clusters using networked

computers especially within the open source community. Some examples of systems like

these are the NASA developed Beowulf design, and Sun Microsystems Inc.'s N1 Grid

Engine. Any decent QA system tends to be resource intensive and can benefit from these

types of algorithms.

The government has historically contributed a large amount of resources trying to

develop IR and QA related systems. One example of such a system is CYC (Lenat, 1995)

which is an attempt to create a natural language processing system that can process and

understand plain text documents such as the New York Times. CYC does this by creating

ontologies which are basically context driven relationships between words in a sentence. This

works to a certain degree and allows CYC to build a vast knowledge base of simple

relationships and word meanings. These relationships are not much use when it comes to

providing answers to more complex questions. More logical questions such as: is a dog a

9

cat? could be analyzed by using the knowledge base of CYC to be determined to be false.

The knowledge base itself can be used as part of a QA system. Using CYC in a QA system

has only recently been considered (Curtis, Matthews, & Baxter, 2005). This became possible

when part of CYC was released under an open source license. CYC is a good example on

how much work is required to just get a basic understanding of written or spoken language.

Given lessons learned from previous approaches today’s QA systems mostly rely on

hybrid solutions where shallow language understanding is used combined with some aspects

of natural language processing.

2.3 QUESTION ANSWERING SYSTEMS

Question Answering Systems have evolved from the field of Information Retrieval.

Information Retrieval traditionally takes as input a set of keywords that constitutes a query.

The query is then processed by various algorithms. Usually the query is broken up by

separating all the individual keywords which are then used to search for relevant documents.

During the search the keywords will be matched up against an index that references the

different documents. Many times a keyword query will not contain sufficient information to

produce quality results. One reason can be due to the lack of keywords or the lack of

descriptive keywords. This is a very likely scenario when clients type in the queries

manually. These types of problems can be solved to a certain degree by applying query

rewriting, or query expansion prior to searching. There are several different algorithms that

are involved in this process such as finding keyword synonyms, and possibly apply stemming

algorithms. Stemming was first introduced by Lovins (1968) and is used to obtain a word

morphological root, thereby reducing the granularity of words that need to be indexed.

Stemming is usually an integral part in any modern IR system. When a resulting set of

documents has been retrieved these documents are sorted based on relevance and then

presented to the user as seen in Figure 2.3. The most common ways of doing this is to use a

Boolean Model or a Vector Model. The Boolean model suffers from the fact that it is binary

and will blindly exclude documents whose index terms (keywords) do not qualify the

Boolean expression. Let ti be index terms in the following Boolean expression: q = t1 − (t2 /

t3). For the query q to be true index term t1 is required, and either t2 or t3 needs to be present

as index terms for the document. This works well when controlling exactly what document

10

subset is returned. Many search engines use the Boolean model. The main disadvantage of

the Boolean model in IR and QA is that index terms can only be given Boolean weights

i.e. }1,0{∈iw . This means that with too restrictive expressions no documents will qualify. On

the other hand a very general expression will result in too many documents being returned. A

more popular model that allows for non-binary weights is the vector space model (VSM). In

this model the terms of the query are given weights and so are terms within documents.

Ranking DatabaseSearching Index

Query

Rewrite

User

Interface

Documents

Query

(Keywords)

Refined Query

Text

Documents

Keyword Query

Documents

Ranked

Documents Indexing

Request

Document

Figure 2.3. Information retrieval system.

These term weights are represented by two n-dimensional vectors, one vector d for

the document, and one vector q for the query. A document relevancy number can be

calculated by taking the cosine angle between these two vectors. This is done by taking the

vector dot product divided by the vector cross product.

qd

qd
qdrel

×

•
=),(

The VSM can qualify documents that are only similar to a certain degree to the query.

The amount of documents retrieved can be adjusted by setting a cut-off value to the

11

relevance score. The term weights can be calculated in many different ways. One of the more

popular ways is the tf-idf (term-frequency and inverse document frequency) weighting

scheme developed by Salton and Buckley (1988). The term frequency tf of a term ti is

determined by dividing the frequency of the term in a document by the frequency of all terms

in that document.

∑
=

k k

i

n

n
tf

)(
log

ii td

D
idf

⊂
=

The inverse document frequency idf is obtained by dividing the total number of

documents with the number of documents containing the term. Finally the tf-idf weight is

calculated by taking the term frequency times the inverse document frequency. The tf-idf

weighing scheme has received a lot of attention in the IR research community, and is one of

the more popular models.

The main problem with information retrieval is that when provided with the resulting

full text documents finding the requested answer can many times be difficult. An information

retrieval system does not inform (i.e. change the knowledge of) the user on the subject of his

inquiry. It merely informs on the existence (or non-existence) and whereabouts of documents

relating to his request (Lancaster, 1968). To simplify this analysis, a system that can perform

Information Extraction (IE) to extract specific content data from resulting documents would

be needed. That way a user could more quickly determine whether the information is

available or not. Providing this feature is one step closer to Question Answering.

The task of a Question Answering System is when given a plain text question to

extract information from its knowledge base and serve up an intelligent answer back to the

client. A simple keyword query in Information Retrieval is trivial when compared to being

able to understand a question written in natural language. Many have said that Question

Answering is in fact the holy grail of Information Retrieval. The scientific reason for

Question Answering is that the ability to provide an intelligent answer given a structured or

unstructured source of information can be considered the essence of understanding.

12

2.3.1 Generalized Question Answering Architecture

Sometimes when asked a question it can be difficult to give an answer even when

possessing the knowledge required. Programming a machine to answer questions becomes

much more difficult. However several approaches on how to design such a system have been

suggested and implemented. In this section the general architecture of a Question Answering

System is presented, and all the different parts are explained. Each section directly refers to

the different parts depicted in Figure 2.4.

Figure 2.4. Generalized question answering architecture.

2.3.1.1 USER INTERFACE

Most question answering systems that have recently been implemented provide the

user with a web based form where questions can be entered. The question is then submitted

and the system interprets the question and responds by returning a formatted answer similar

to what you would expect from a person. The user interface could also be constructed by a

speech recognition and speech synthesis interface. The user interface is an important part of a

QA system but not that much research has been devoted to it as of yet. Many interfaces

mirror the look and feel of a search engine such that not only the answer is presented but also

other answers that received a high confidence score. Future QA interfaces will most likely

13

blend transparently into our everyday life such as telephone support, household products, and

car navigation systems.

2.3.1.2 QUESTION ANALYZER

The question analyzer plays an important role in any type of question answering

system. In this module the question is analyzed and processed to extract as much information

as possible that can be used later in the data retrieval phase. Different implementations will

differ in the depth of analysis at this step. For example such analysis may involve breaking

up the words in the question and using everything but the stop words in the search compared

to complete syntactic parsing of the sentence. Stop words are words that will not increase the

performance in the retrieval phase. These stop words can be words such as is, are, he, which,

etc. In open-domain systems the question is commonly rephrased into what is thought to be

part of the answer.

• Where is the Eiffel tower located? (original question)

• the Eiffel tower is located (part of answer)

• the Eiffel tower is close to (part of answer)

• the Eiffel tower can be found in (part of answer)

That way several parts of the possible answer are used when searching through the

document collection. Query expansion is another way to increase the chances of finding a

document containing the answer. Question terms can be expanded into several terms using

synonyms. Other features about the question can also be extracted such as the question type.

2.3.1.3 DATA RETRIEVAL

Some of the information that has been extracted in the question analyzer will be

utilized to query the knowledge base for information. This can be done in several different

ways. An open-domain QA system would use either a custom search engine or a third party

search engine to search documents distributed over the internet. A closed-domain system can

search unstructured, semi-structured, or structured data sources such as a database. Within

this part of the system other pre-processed information is many times used to improve

performance. These types of resources can be anything from a comprehensive index to pre-

processed parts of the document collection. The data-retrieval part of a QA system is many

14

times similar to the data-retrieval that is done in an IR system which would utilize methods

such as Boolean keyword search or term weighing. In the data-retrieval phase of a QA

system it is important to retrieve as much relevant information as possible. The quality is less

important because the result will not necessarily be presented to the user. What is more

important is that the information asked for be found. That means that if the system has

enough performance to process the information the larger amount of information the better.

2.3.1.4 ANSWER EXTRACTION

Answer extraction falls under IE (Information Extraction). In this part of the QA

system the information has been retrieved. The information can be either documents or text

resulting from a database query. This information is used to extract passages that relate to the

question asked. At this part QA systems really start to deviate. Some systems will consider a

passage containing the answer a valid response. Other systems will try to create a properly

worded answer. An open-domain system can differ from a closed-domain system in this step

where an open-domain system will always have a set of documents at this stage or a set of

passage summaries as result of a search engine query. The most basic way to generate an

answer is to extract parts or chunks of the information that relate most closely to the

question. These chunks can then be put together to form an answer or several answers. There

are many different ways IE algorithms rate what passages to extract (Tellex, Katz, Lin,

Fernandes, & Marton, 2003).

2.3.1.5 RANKING

If the answer extraction results in more than one answer these answers are ranked

based on relevance. Again, there are many different approaches on how to properly weight

the answers and this is closely connected to how the answer is extracted from the information

processed in the answer extraction phase.

2.3.1.6 ANSWER VERIFICATION

Some more advanced systems will further improve the accuracy by analyzing the

resulting answer using deeper NLP methods to justify it against the question. The question

and answer are parsed and converted to their logical forms. The question and answer are then

compared by trying to logically prove the correctness of the answer by using methods such as

15

abductive justification. This is done by using information and facts contained within the

documents, world knowledge which is many times extracted from WordNet, and domain

specific ontologies.

2.3.2 History of Question Answering

Designing a Question Answering system is no novel concept. Several systems have

been produced since the 1960’s. The first systems were restricted-domain QA systems that

interfaced against databases. One example of such a system is BASEBALL developed 1961

by Green, Chomsky, and Laughery (1961). This system was designed to provide factoid type

information about the American baseball league statistics. This was done by using shallow

language parsing techniques. Another system similar to BASEBALL was developed by

Woods (1973) and was named LUNAR. LUNAR was able to answer questions regarding the

rock samples returned from the Apollo lunar exploration. Wood system translated the

questions to one or more database queries. The TEAM system developed by Grosz (1983)

had some basic features such as semantic representation routines, and a schema translator

that made it more modular than the previous two systems. The similarities between all three

systems are that they were all using databases to store their knowledge base. The design of

these databases and the structured data they contained was all created manually by experts in

their respective fields. Having a very structured knowledge base made the systems perform

very well against their targeted domain of expertise. Any questions relating to topics outside

the targeted domain would generate poor results.

Dialog systems started to appear around the 1960s. These systems were mostly

influenced by the test suggested by Alan Turing which he called “Imitation Game” (Turing,

1950). The theory behind the test was that a machine is to be considered intelligent if a

person communicating with the machine via teletype could not distinguish it from a real

person. Conversational systems such as Joseph Weizenbaum’s ELIZA (1966), and the

“Conversation Machine” (Green, Berkley, & Gotlieb, 1959) were the first systems that could

be verified against a Turing Test. These systems were designed to provide ways to carry on a

basic conversation by recognizing certain word patterns. The result could be quite convincing

but even a novice user could quite quickly find flaws. In 1991 Hugh Loebner started the

Loebner Prize Competition, offering a $100,000 prize to the author of the first computer

16

program to pass an unrestricted Turing Test. This has not yet been accomplished, but several

comprehensive rule based systems have been competing each year.

Using natural language processing for story comprehension received a lot of focus

during the 1970s. One system like this was MARGIE (Schank, Goldman, Riesbeck, &

Rieger, 1975). This system was able to process documents which it later could answer basic

questions about. This was done by parsing and organizing the document’s information in a

similar pattern as human memory is thought to work. This was further improved by Lenhert,

Dyer, Johnson, Yang, and Harley (1983) in the BORIS system. BORIS explored story

comprehension by introducing elements such as emotions and themes. BORIS and MARGIE

are systems that more closely mirror the way open-domain question answering system work

today. The likelihood comes from the way the systems are designed to extract and process

information from unstructured text.

During the 1980s Natural Language systems that interfaced against databases started

to get a higher commercial adoption rate. Among the companies that started to offer these

types of solutions were EasyAsk who now back enterprise customers such as Forbes, BASF,

and FedEx with certain QA solutions.

Some of the first web-based QA systems appeared during the 1990s. MIT’s START,

appeared in 1993, (Katz, 1997). START used annotation to break up sentences in something

called a ternary expression <subject relation object>. These ternary expressions were later

used to more efficiently issue queries against the system’s knowledge base. START was

followed by Ask Jeeves in 1996. Ask Jeeves supports NL queries and is thought to mainly

use query templates to match questions (Sneiders, 1999).

The focus on Question Answering systems within the research community got a

major boost during the last decade. This was due to a combination of things such as large

amounts of indexed documents becoming available with the introduction of the internet. Also

advances within Information Extraction, and more commercial interests for QA solutions

caused the field of Question Answering to get more attention. Other things that have made it

easier to develop more complex QA systems are resources such as WordNet (Fellbaum,

1998), and OpenCyc (Curtis, Matthews, & Baxter, 2005). WordNet provides access to

semantic information, and semantic relationships. CYC provides access to ontology

17

information and everyday common sense knowledge. Both these systems have now been

made freely available to the public.

The U.S. government’s Text Retrieval and Evaluation Conference (TREC) Question

Answering track (Voorhees, 1999) also made a big contribution. The question answering

track was initiated at TREC-8 in 1999 with 20 participants. The Question Answering track is

a competition to evaluate systems of question answering in open-domains. This event

enabled researchers to start sharing their experiences, and also compare their results using

common metrics. Every year the TREC competition has gotten more comprehensive in its

QA tasks. In the first QA track the participants were required to return a 50 to 100 character

long string as a response to a question. This string did not need to be formulated correctly but

was supposed to hold the answer to the question. Most of the questions lead to short factual

answers such as the name of a person or a date. These types of questions are called factoid

questions. Since then another question category has been introduced when a question can

produce several answers. An example of a list question could be, “Name three car

manufacturers”. Aggregating a list of answers makes the task a lot more complicated because

the list of answers often needs to be extracted from several different documents. Throughout

the last question answering tracks Language Computer Corporation (LCC) has been the best

performing team by far, averaging close to 70% accuracy on factoid type questions. In the

2004 competition the team in fourth place had 34.3% accuracy (Voorhees, 2004). That score

is less than half of what LCC got, and shows that the average QA system performance is still

quite low. For the list questions the top ten teams in the 2004 competition had an average

accuracy of 24%.

In the last TREC QA competitions the approaches used by different teams can be

summarized as statistical, rule-based, and mixed. Most advanced Question Answering

systems are starting to become exceedingly complex, often using several different modules

such as information retrieval, sentence parsing, pinpointing question-types, semantic

analysis, and even reasoning (Moldovan et al., 2002) to evaluate, and rank answer

candidates. With the increased complexity of QA systems it many times becomes harder to

pinpoint where the increased performance comes from.

18

2.3.3 Question Answering Roadmap

Given the success of the TREC competition a committee was put together by some of

the key people involved in the competition to produce a roadmap for question answering.

This roadmap was intended to cover many aspects of QA and what type of enhancements

would be expected over the next years. The result was a roadmap document (Burger et al.,

2000) describing a vision of future QA. Questions range from simple facts to complex

scenarios such as producing answers based on the context of a discussion. The committee

determined that users of a QA system would want the following key features from a QA

system:

• Timeliness. Answers should be provided in real-time. Knowledge bases should
include recent and complete information.

• Accuracy. The precision of the QA system should be flawless. Not responding to
questions that are not known is important. QA systems should mimic common sense
inference.

• Usability. More domain specific knowledge must be incorporated in QA systems.

• Completeness. Complete answers need to be provided. Answer should be fused
between several different data-sources. Open-domain and restricted-domain
knowledge might need to be combined to provide an accurate answer.

• Relevance. Answers to a question must be relevant within the current context. This
relates to when a user issues follow up questions, and the system considers the
context of previous questions to determine the answer.

Given the above goals, systems have not really improved that much since the

roadmap was released. Many systems still struggle with factoid type questions. Open-domain

systems still do not formulate answers in a very readable way. The state of the art open-

domain systems are not close to being real-time, especially not if you consider that a QA

system should support serving thousands of clients at the same time.

Some focus in the roadmap document was put on different types of questioners and

that different answers need to be produced based on their sophistication.

• Level 1. Casual questioner.

• Level 2. Template questioner.

• Level 3. Cub reporter.

• Level 4. Professional information analyst.

19

Several advanced QA research areas were presented with examples how a QA system

should reason to provide answers that fit the questioner based on their sophistication level.

Question classes was the first research topic. One important aspect of determining a question

class is to determine the focus of the question. This can often only be done by knowing

additional information about question context, domain knowledge, and also general world

knowledge. The second research topic was to be able to determine question ambiguities and

implications. An example question could be: “what recent drugs has Pfizer introduced on the

market?”. The ambiguity here would be drugs developed by Pfizer or marketed by Pfizer.

The third research topic was context. Supporting context based QA would mean that the

system could potentially answer the same type of question differently based on the current

context. An example could be if a user first asked a question about Las Vegas and then asked

on what street the Eiffel Tower was located. The context topic could have been set to Las

Vegas and the system would be able to determine that the user wants to know where the Paris

hotel is located. One other research topic was somewhat related to the list question in the

TREC question answer track competition where the systems need to extract the answer from

multiple sources. This research topic was more complicated though because it introduced

answer verification (see Table 2.1). The QA system would have to be able to resolve several

different types of complex relations to render a proper answer.

2.4 OPEN-DOMAIN QA VERSUS RESTRICTED-DOMAIN

QA

In this section the benefits and limitations of open versus restricted domain QA

systems are analyzed in more detail. Open-domain QA systems can be defined as tools

capable of extracting the answer to user queries directly from unrestricted-domain

documents. Restricted-domain QA systems are geared more towards providing answers from

knowledge bases that cover a specific domain such as student advising or computer repairs.

In over a decade, the open-domain QA research has dwarfed the workload that has been

devoted to developing restricted-domain QA systems. There are several reasons for this

significant difference in focus. One of the main reasons for this difference in focus is the

introduction of the internet. By using the internet, billions of indexed documents have

become easily accessible through search engines. These documents serve as the main

20

knowledge base in an open domain QA system. Another strong reason is the addressable

market that becomes available with an open domain system verses a restricted domain. An

open domain system can facilitate almost anyone searching for simple factoid type questions.

Table 2.1. Example of Answer Extraction from Multiple Sources

Level 1 “Casual
Questioner”

Q: When was Queen
Victoria born?

Text 1: Queen Victoria (1854,
1889) ruled Britain with an iron
fist ….

Text 2: British monarchs:
Victoria 1832-1889

Edward 1874-1946

Elizabeth 1923-

Answer: 1832

Level 2 “Template
Questioner”

Q: How many
casualties were
reported last week in
Fredonia?

Text 1: Last Monday two people
were killed on the streets of
Beautiville, Fredonia, after a
bomb exploded

Text 2: The terrorists murdered
a family with a small child in
Fredonia last Friday, near its
border with Evilonia. The father
just returned home the day
before.
Answer: five people

Level 3

“Cub reporter”

Q: How many U.S.
households have a
computer?

Text 1: Two families in three are
connected to the Internet in the
U.S.

Text 2: Last year, IRS has
received 150 million individual
return forms.
Answer: 90 million

Level 4
“Professional

Information Analyst”

Q: Why were there
hacker attacks on the
computers at
University of
California, Santa
Barbara?

Text 1: U.S. colleges have
powerful computing facilities.

Text 2: Computer hackers need
speedy processors to break
security passwords.
Answer: To use their computers
for password cracking

21

A large portion of the revenue sources online originates from advertisement.

Enterprise companies such as Google, Yahoo!, and Microsoft want to create products that

address a wide user segment. None of these companies currently have a strong open domain

QA solution, but they are all working hard on different QA solutions. Yet another strong

reason that open domain QA systems have received more focus is the U.S. government’s QA

track competition. This competition has introduced several organizations and universities to

open domain QA research.

Open domain QA systems perform well in facilitating the basic need of the casual

internet user. However, these systems are not sufficient to provide answers to more complex

questions that would make QA become really useful.

2.4.1 Benefits in Open-Domain

Open domain QA systems benefit greatly from the abundance of data available on the

internet. The more information an open domain QA system can access and process, the more

efficient it becomes (Banko et al., 2002). That the QA system accuracy would increase with

more data is based on the theory that if several phrases are found with the supposed answer

the likelihood that this is the correct answer increases. Many open domain systems in their

initial phase will rewrite a question as an answer, or a part of an answer. The result of this

transformation will then be used as a search query. Several open domain systems will also

post the entire question as a search. In many cases these simple approaches will produce

quality results when finding the correct answers to simple factoid type questions. The reason

for this simplicity is that almost any type of trivial question will have a certain amount of

coverage online. An example of this would be the question: Where is the Eiffel Tower

located? One way to rewrite this question as part of the answer would be: the Eiffel tower is

located. When using this partial answer string as an exact search in Google the first

document returned contains the string: The Eiffel Tower is located in the St Germain district,

Paris, France. The second document contains the string: The Eiffel Tower is located in Paris,

France. Both these results would have been sufficient in answering the question.

Most of today’s open domain question answering systems uses the large quantities of

similar or redundant data available online to statistically justify the correctness of an answer.

This is done based on the occurrences of the same answer in several documents. Small

22

answer chunks are extracted from documents. These documents have been retrieved as the

result of the initial information retrieval phase following the query expansion. These answer

chunks are then co referenced and combined in such a way that an answer is formulated

(Morton, 1999).

Several researchers have found that when increasing the amounts of data that are

found covering the topic of the question it can reduce the complexity of the algorithms

needed to produce a correct answer. Banko et al. (2002) states that “The more training data

that is used, the greater the chance that a new sample being processed can be trivially

related to samples appearing in the training data, thereby lessening the need for any complex

reasoning that may be beneficial in cases of sparse training data”.

2.4.1.1 AUTOMATICALLY UPDATED

Many internet resources will receive frequent updates. If designed correctly, an open

domain system can benefit from these updates. Automatic updates will limit or completely

eliminate the work that would normally be required whenever new or updated information

becomes available. This enables the open-domain system to quite effortlessly facilitate

questions regarding highly variable content such as news resources. The system maintenance

is reduced to frequently scanning existing content resources for updates and additions.

2.4.1.2 BROAD COVERAGE

If the open domain system does not constrain its web search to specific domains there

is a high probability that almost any type of topic will be covered to at least some degree.

2.4.1.3 COMPREHENSIVE RESEARCH

AVAILABLE

As stated earlier, the effort that has been put into the field of open domain QA

research is significant. This will benefit anyone who plans on investing resources in open

domain QA system development or research.

2.4.2 Limitations in Open-Domain

This section describes limitations that can be found in Open-domain question

answering systems.

23

2.4.2.1 LARGE

The amount of data covered in most open-domain QA systems is significant, many

times exceeding several terabytes. Because of the large amount of data, there are challenges

when determining the set of documents to include when searching for an answer. When the

query or queries are formed during the initial IR phase of the QA system, it is critical that

they are constructed just right. If the queries are too general, too many documents will be

retrieved, and the system will not have enough resources to process the resulting documents.

This will cause the system performance to suffer and result in unacceptable delays. On the

other hand, if the queries are too specific there is a high chance that the correct answer will

not be part of the returned document collection. Determining how many documents will be

required to answer the question depends on the complexity of the question. If the question is

very common, it will result in large amounts of documents being returned. Restricting simple

queries will still have a high likelihood that the correct answer is found. Determining the

complexity of a question is very hard. “We do not yet understand how to predict what makes

some questions harder than others” (Kukich, 2000). An example would be the question,

what courses would you recommend me to take? This question would require knowledge

about all courses available, and also possibly information on what focus the student has who

is asking the question. The challenges in determining the complexity of a question leaves an

open-domain system in a dilemma. The open-domain system works to construct queries in a

way that will generally provide good results for a large number of queries. The amount of

searchable content available through search engines will likely continue to grow

exponentially for some time. This will further impose a more stringent way to construct

open-domain queries to target correct answers. The hardware performance of computers is

steadily increasing. To improve QA, the algorithms need to become more complex. More

complex queries require better query resources that are tied to the searchable content.

Additional complexity requires additional storage and processing power; this will not be a

commercially viable solution for most open domain QA systems. When the document

collection is increasing at the rate of today, open-domain systems will have to devote most

focus on efficiently managing very large amounts of data. The focus should instead be

directed toward extending the functionality and efficiency of the QA system itself. An open-

domain system is limited on its query resources. These resources facilitate simple searches

24

through the document collection. Features such as named entity taggers

(Greenwood, & Gaizauskas, 2003), predictive annotation (Prager, Brown, Coden, & Radev,

2000), and comprehensive indexes are very useful to improve the performance of a QA

system. These features rely on synonym extraction and deeper NLP analysis which increases

the system storage requirements. This means that an open-domain system cannot construct an

extensive feature rich repository of resources. The open-domain system will have to rely on

the most efficient features that will have limited storage requirements.

Another problem with a very large knowledge base is related to the way most people

ask questions. The first question is usually not that complex, but is then followed by more

detailed questions relating to the same topic. With a large knowledge base, an open domain

QA system will be limited to the initial questions and will usually not be able to provide

answers to more complex follow-up questions.

Almost all open-domain QA systems require that a very large amount of documents

refer to the same type of information. This makes it very hard to transition an open-domain

system to cover restricted domains. Applying an Open Domain question answering system

on a restricted domain it will not have a large document base covering the same information.

This will result in the quality of answers decreasing significantly.

2.4.2.2 CONTENT QUALITY

The inability to control the content of the open-domain knowledge base results in

several drawbacks. An open-domain system will suffer from misspellings, badly formatted

web-pages and text. The documents can also hold malicious or deliberately misleading

information. The information can be biased, to present one among competing views. All

these scenarios will hinder the open-domain system’s ability to find and construct correct

answers.

2.4.2.3 INACCURATE CONFLICTING DATA

The main benefit of an open-domain QA system also has its downfalls. Relying on

the abundance of data to statistically prove accuracy may result in a flawed approach for

several types of questions. The Language Computer Corporation (LCC) has an online version

of their NL QA system. When presented with the following question: What will be the price

25

of the Playstation 3? The LCC system responds with candidate answers containing several

different prices. The prices are $399, $800, $599, $499, $499, and $600 respectively. The

correct answer at the time of the query was $499. A user would not be able to determine this

unless visiting the documents where the prices were extracted from. A user might not be able

to determine the correct answer even by reading through the documents the information

originated from. This is a good example of an open-domain QA system trying to answer

questions about rapidly changing facts. Using multiple sources of unstructured text, and

weighing extracted snippets by the number of occurrences and various other criteria, older

data might be considered more relevant than new. This makes sense because the Playstation

3 game console was initially thought to be priced around $800. There was also discussion

about trying to match the price against Microsoft Xbox 360 which was priced at $399. When

most web content is not time stamped, or can not be trusted to be time stamped correctly, an

open-domain system cannot efficiently include time related information in the answer

ranking process. In a restricted-domain system there will usually only be one answer

provided. A restricted-domain system is backed by the structured or semi structured

knowledge base. If the knowledge base is properly maintained, or provided by a trusted

knowledge provider the problem mentioned above would less likely occur. Therefore, the

system could easily be fixed.

Open-domain systems that are heavily based on the redundancy of information, will

work better for fixed factoid type questions. These factoid type questions are part of the

TREC competition (Voorhees, 1999). However, these questions are less likely to be asked by

regular users. When the question is directed towards a restricted domain, the open domain

QA system will most likely mislabel it as a general question and provide an inaccurate

answer.

2.4.2.4 MAINTENANCE

Open domain systems that rely on a knowledge source that is not controlled by the

staff administering the system, will always suffer from maintenance problems. This model

fits most open-domain QA systems. If a resource needs to be extended or updated but resides

outside the direct control of the system, it will end up causing problems. Modifying an open-

domain system to handle these types of scenarios is hard. It becomes problematic adding

26

additional knowledge to the system. There is no easy way to make sure the system learns

about new facts. The system will not be able to provide accurate answers if the only way to

learn new facts is when third party providers update their content.

2.4.3 Benefits in Restricted-Domain

In a restricted-domain QA system there are a lot of specific properties that can be

exploited by means not possible in open-domain QA. A question answering system requires

understanding of natural language text and the QA system requires much linguistic and

common knowledge for answering correctly. One way to improve the accuracy of a question

answering system is to restrict the domain it covers. By restricting the question domain, the

size of the knowledge base shrinks and several different methods to efficiently process

questions becomes available. Many of these methods would be too process intensive to apply

in an open-domain QA system.

2.4.3.1 TECHNICAL TERMS

In some restricted domains, many of the questions can only be answered correctly by

experts. These types of restricted domains are usually associated with a large amount of

technical terms. These technical terms might exist only within that particular domain. Within

open-domain QA systems these terms are usually discarded as misspelled words or words

where no type or word-sense can be associated. Within restricted-domain QA systems these

technical terms play an integral part of determining the answer to a question. Technical terms

can be included in domain specific word-lists and lexicons. These resources hold information

on what the term means and how it is associated with other terms within the restricted-

domain. In this manner the results from a query can be greatly improved compared to those

terms being discarded. A restricted-domain QA system can use this information to generalize

terms or find alternative terms to use in the query expansion and answer selection processes.

2.4.3.2 ACCURACY IN UNDERSTANDING

CONTENT WORDS

Restricted domains will naturally impose a restriction on the meaning of polysemous

words. Polysemous words are words that can have several different meanings. There is a

much higher chance that a basic bag-of-word approach will render quality results.

27

Polysemous words such as the word interest can have several meanings in an open-domain

QA system. This word could mean interest in taking some course work, or the interest on

your bank account. This requires an open-domain to more carefully control the query

expansion to limit the search results based on what was asked. Polysemous words are quite

common, “approximately 20% of the words in WordNet are polysemous” (Hung, Wang,

Yang, Chiu, & Yee, 2005). Within the restricted student-advisor system, the word interest is

highly unlikely to represent bank account interest which increases the chances of finding

more relative information. This will limit the complexity needed for analyzing the questions.

Therefore, additional processing resources can be used elsewhere. This fits well with the

shallow parsing methods that are common for question answering algorithms.

2.4.3.3 SPECIALIZED VOCABULARY

In a restricted-domain QA system, it is easier to create a lexicon or an ontology that

covers the knowledge base and the domain. This is due to the limited vocabulary that needs

to be covered. If system is able to quickly access information about domain specific words, it

is possible to use inference to determine the meaning of certain words within the context of

the question.

2.4.3.4 ACCESS TO DOMAIN SPECIFIC

LINGUISTIC RESOURCES

In an open-domain QA system any type of specialized resources need to be general.

With general resources the system can provide enhancements across any domain. In a

restricted domain, it is possible to build lexicons, dictionaries and ontologies that target a

specific domain. There have been many successful restricted-domain systems developed in

various fields such as biomedicine (Zweigenbaum, 2003). These resources can help both with

analyzing questions and constructing answers.

2.4.3.5 STRUCTURING OF THE KNOWLEDGE

BASE

When documents or resources that constitute the knowledge base of a QA system are

stored locally, it can benefit the system. The access and structural layout of the documents

can be changed to better facilitate the design of the QA system. This is much harder to do in

28

an open domain system where almost no control can be imposed on the knowledge base; this

is due to the knowledge base being provided by third parties. An open-domain system can

write an intermediate tier where this structure could be created programmatically. Creating

an additional tier for this purpose will hinder performance. In a restricted-domain QA

system, there are special components that are designed to parse specific documents within

that domain. Completely structured data in the form of databases are also common. This is

the case of the student-advisor system, where most of the knowledge base resides within a

database.

2.4.3.6 QUALITY AND RELIABILITY

Quality and reliability are the greatest advantages of restricted domain QA systems.

When the system can control its knowledge base, the quality and reliability of the answers

will increase. Resources that contain content that is constantly updated is treated with less

confidence and subject to more frequent verifications. If the data in the knowledge base is

formalized this will improve reliability even further. A restricted-domain QA system can be

designed to certify that the information provided is accurate and correct. This would be close

to impossible in an open-domain QA system.

2.4.3.7 ANSWER FORMATTING

Restricted-domain QA systems allows for better control on how answers get

formatted, especially in the case of the student-advisor, where answers are completely

custom formatted based on the question. Custom formatted answers are preferred over

programmatically generated answers because the answer can include some context. Users are

found to prefer some context compared to an exact answer. That users prefer more verbose

answers was concluded in a research effort by Lin, Quan, Sinha, Bakshi, Huynh, Katz, and

Karger (2003) “users prefer paragraph-sized chunks of text over just an exact phrase as the

answer to their questions”. From the same study it was also found that only 3.33% wanted an

exact answer, 53% wanted a paragraph, 20% wanted a sentence, and 23% wanted a whole

document. These numbers would indicate that open-domain QA systems most likely leave

the user wanting more information. Their very limited ability to provide more than just

factual answers is unfavorable to most users.

29

2.4.4 Limitations in Restricted-Domain

This section describes limitations that can be found in restricted-domain question

answering systems.

2.4.4.1 SCARCITY OF DATA

The abundance of data is something all open-domain QA systems rely on. Several

passages that relate to the question are extracted and non frequent passages are discarded

when constructing the final answer. Experimental results show that question answering

accuracy can be greatly improved by analyzing more and more matching passages (Dumais,

Banko, Brill, Lin, & Ng, 2002). In a restricted-domain, that luxury is usually not available.

The scarcity of data makes it hard to write IE algorithms that determine which information

extracted relates to the question. However, restricted-domain QA systems such as

ContextQA will present fewer problems due to matching questions to existing QA pairs. It is

not of great importance if the answer is represented multiple times or not, especially if there

are multiple questions leading to the same answer.

2.4.4.2 COMPLEXITY OF QUESTIONS

In many restricted domains questions tend to be more complex than the questions

handled by open domain. Therefore the questions are in many cases more verbose and

longer. With this follows that the process of providing answers also becomes more

complicated.

2.4.4.3 COMPLEXITY OF ANSWERS

More complex questions usually require more in depth answers. Generating a

properly formatted answer is one of the major problems in both open-domain and restricted-

domain QA systems. A complex question can be a why or a how type question. These types

of questions might need to compare different properties or provide an in depth explanation on

how to do something. The problem of automatically generating an in-depth answer in the

ContextQA system is not much of a problem. If the question is correctly matched with one of

the existing questions in the knowledge base, a well-formed answer is guaranteed to be

available.

30

2.4.4.4. EVALUATION OF RESTRICTED-

DOMAIN QA

The limited amount of analysis using restricted-domain QA systems makes it

challenging to accurately evaluate its performance. Open-domain systems have the advantage

of having several common metrics and question sets that can be analyzed and compared

against. Some researchers developing restricted-domain QA systems have found this

problematic and have suggested several enhancements. These enhancements would separate

restricted-domain QA evaluation from open-domain, “Simply applying the open domain QA

evaluation paradigm to a restricted-domain system poses problems in the areas of test

question development, answer key creation, and test collection construction.” (Diekema,

Yilmazel, & Liddy, 2004). Any restricted domain QA system will be targeted towards a

specific audience. Thereby the system might require different evaluation methods based on

the target audience. The restricted domain evaluation extends beyond the domain specific

questions and should incorporate tests that show how well it fits its target audience. To

standardize this test process becomes difficult.

2.4.4.5 COST OF MAINTENANCE

By not having automatic updates done by third party resources, the maintenance of a

restricted-domain QA system is left to the administrators. The problem of maintenance will

become more significant in an environment where there is a high rate of change. The

knowledge base can be complex, covering proprietary information that requires

knowledgeable administrators. Some systems might require constant maintenance to conform

to new data sources. All these aspects will increase the maintenance cost. Keeping the QA

system small enough to be maintainable but still useful is a delicate balance which requires

experience. A smaller company or organization may have minimal resources to hold a large

knowledge repository. In many cases the repository would then cover areas that are known

not to change very often. Smaller companies usually require outsourcing to properly

implement a restricted-domain QA system. Implementing a restricted-domain QA system is a

significant project with large up front expenses. A project like this can also yield an uncertain

return which acts as a deterrent to small businesses.

31

2.5 THE CHALLENGES OF QUESTION ANSWERING

SYSTEMS

We do not yet understand how to predict what makes some questions harder than

others (Kukich, 2000). One of the hardest aspects of question answering is complexity of the

language the questions are formulated in. The English language by itself has hundreds of

thousands of words and that is just when using a common dictionary. Then you have to add

domain specific terms in a restricted-domain question answering system. Spoken languages

and communication is mainly designed for humans and not computers. Computers could

more easily communicate using a much more optimized language to better suit its

architecture. Given that in today’s world humans have daily interaction with machines

creates a need for better and more innovative interfaces between the two. There is a reason

why this communication hasn’t gone very much further than simple instructions. The

problems of making a computer understand spoken language are not trivial. Different words

mean different things dependent on what the context is. Things that make it more complex

are slang, bad grammar, and spelling errors. Humans can quite easily get past these types of

problems given the great ability of understanding patterns. We can also apply our world

knowledge to these patterns to be even more efficient.

The hardest types of questions have been determined to be Why and How type

questions. To provide an answer to these types of questions you usually need knowledge

about everything the question relates to, and not only the direct context of the question. You

might also need experience from several other topics which have to be combined and

analyzed. A good example would be: Why is Question Answering Hard? To properly be able

to provide an explanation on why writing question answering systems are hard you need to

know almost everything there is to know about question answering. In the ContextQA system

more than 25% of the questions are How and Why type questions. This is possible partly due

to the design of the knowledge repository and limiting the problem scope.

Another aspect that makes Question Answering hard is that the problem space

intersects with several of the more complex research fields (see Figure 2.5) in computer

science.

32

IR IE

NLP

QA

Figure 2.5. Intersecting QA research fields.

These fields are mostly Natural Language Processing (NLP), Information Retrieval

(IR), and Information Extraction (IE). The positive aspect to this is that QA systems will

benefit from advances in any of these fields.

The complexity of QA can easily be underestimated. The TREC competition shows

this where new more advanced QA methods that extend past retrieving factoid type answers

have not made much progress. There have not been any significant new results for quite

some time. Because QA can be seen as part of NLP it will to a certain degree have the similar

problems as NLP such as being able to understand world concepts. The IR portion of QA

also introduces a whole slew of complex problems that need to be addressed. When a

question answering system retrieves its initial set of documents to extract answers, the noise

ratio can be quite high. The noise ration will be more limited in a restricted-domain system

than in an open-domain one. However, in both types of systems there is a significant chance

of getting irrelevant results even with the right set of search keywords. The QA system needs

to be constructed in such a way that it can quickly sort out data that is not relevant to the user

queries. Regular IR usually removes all stop words and only considers what is left. Stop

words are words such as is, are, he, which, etc. Using only the approach of removing stop

words is not sufficient in QA because just subtle changes in a sentence can completely

change its meaning.

1. Why should I have an advisor? (repository question)

2. When should I have an advisor? (client question)

33

3. Where should I have an advisor? (client question)

After removing stop words we are left with the words should and advisor, this

qualifies the repository question for both alternative two and three but if the question only

address why the student should have an advisor the answer would not be correct. Ideally the

word When or the word Where should automatically invalidate alternative two and three.

Finally, when information is extracted and an answer is formulated one of the most

difficult tasks for a QA system is to determine if that answer is in fact correct. In a restricted-

domain QA system this problem is usually limited since the chance of erroneous data

decreases with the size of the domain. An open domain usually tries to tackle false facts by

correlating several documents against each other. This way decisions can be made on what is

correct and what is wrong.

2.6 ATTRACTIVE MARKET

Because there are so many different ways of applying question answering to various

markets, several companies are developing a wide range of different QA systems. Spoken

dialog systems are getting more advanced where a person can call in and ask questions over

the phone. These systems can be anything from a bank teller system, or a directory service.

The potential savings for companies solely focusing on these types of tasks can be

significant. In 2001 Forrester Research estimates that the cost of manually answering a

customer inquiry by phone to be $33, e-mail $9.99, and a web self-help system $1.17.

Online QA systems still remain more collaborative in nature. Users submit questions

and other users answer their questions. Some companies like Ask.com have integrated

support for natural language questions in their search engine. Ask.com has also sold this

technology to companies like E*Trade and Toshiba. A large percentage of people are using

search engines when looking for answers online. A significant portion of online revenue is

made based on search engine advertisement. It is natural that QA systems have become a

very attractive problem to solve.

34

CHAPTER 3

SYSTEM DESIGN

This chapter gives a design overview of the ContextQA system. The QA roadmap

research (Burger et al., 2000) was part of the inspiration when designing the structure of the

QA system, and what problems to solve. The roadmap research document covers more or

less how a flawless QA system should work. The document authors describe the many tasks,

problems and techniques that need to be addressed to produce such a system. The roadmap

document led to several of the decisions made in the process of compiling the final set of

research topics included in the ContextQA system. Currently the QA research community is

stagnant and the roadmap is already failing. The complexity of producing quality QA

systems exceeds the commercial ability to create such systems.

3.1 LIMITING THE PROBLEM SCOPE

The field of Question Answering Systems has proven itself to be one of the hardest

fields in Computer Science to solve. Many projects have failed due to the inability to

properly understand the magnitude of the problem. In a project like this the scope needs to be

carefully planned so that the results produced can still contribute to the research community.

Without the backing resources available to large corporations this becomes that much harder.

Given these facts I have tried to come up with a unique approach in designing a complete

question answering system that uses some interesting approaches to solve some of the

hardest problems.

3.1.1 Restricted Domain QA

The ContextQA system is focused on restricted-domain QA. The decision to target

the restricted-domain is based on the earlier evaluation where I compare open-domain to

restricted-domain QA system. Restricted domain QA has many of the same problems open

domain QA has to tackle, but it requires a significantly smaller knowledge base. This

decision limits the resources required to produce quality results.

35

Running a restricted domain QA system you do not have to rely completely on third

party solutions such as online search engines but rather maintain the knowledge base locally.

The process used to collect and build the ContextQA system knowledge base is mostly

automated. To be able to automate building the knowledge base semi-structured web

documents containing QA pairs are used to kick start the information gathering process. This

provides a rapid way to produce a restricted domain knowledge base in a short amount of

time. The information gathering to build the knowledge base is described in more detail in

the question harvesting section.

3.1.2 Shallow Language Understanding

The main knowledge base of the ContextQA system is based on a semi-structured

repository of QA pairs. The ContextQA system uses various shallow language parsing

algorithms to match incoming questions against the repository of questions in its knowledge

base. Shallow language parsing is different from complete parsing in that it usually only

considers portions of a text, or chunks. Not having to break down the entire sentence into a

syntactic parse tree or similar structure increases performance. A sentence such as Where is

the cashiers office located, could be broken up in the following way, [Where is] the [cashiers

office] [located]. With those chunks the system can understand that [Where is] and [located]

hint that the answer is most likely a location. If the second chunk [cashiers office] also is

included, shallow language algorithms can determine matching questions based on that

information. Any question that is of type location and has the chunk [cashiers office] in it

would be a likely candidate to try and match with.

3.1.3 Completeness of Answers

With completely formulated answers in the knowledge base the system can guarantee

that a well formed answer exists if a question qualifies as a match to an existing question in

the repository. Having well formed answers greatly reduces the complexity of the QA

system, and enables the answers to exceed the quality of most existing QA system. Matching

questions against other questions separates the system from common QA systems where

information extraction, and answer formulation is done. A question answering system that

constructs the answer programmatically will many times suffer from badly worded

36

responses. Given that most QA systems at the time can only produce simple factoid type

answers complex answers that require a large body of text are not even remotely feasible.

Not having to perform information extraction and answer formulation limits the problem.

Another benefit with having QA pairs is that anyone could quite easily extend or

modify the knowledge base of the system without being required to have any particular

knowledge about question answering system design. This way several departments in an

organization which is implementing the QA system can easily work in parallel to extend the

system.

3.2 ADVANCED CONCEPTS

This section lists some of the more advanced concepts that the ContextQA system

utilizes from that of a standard QA system.

3.2.1 Interactive QA

Some of the more advanced topics that have not effectively been tackled in QA systems

to date include interactive QA. Interactive QA means that the system can converse with the

user and keep track of what has been said earlier. One of the best conversational systems in

the world is A.L.I.C.E (Artificial Linguistic Internet Computer Entity). The A.L.I.C.E system

uses a markup language to describe its knowledge base. This markup language is named

AIML (Artificial Intelligence Markup Language). AIML is a derivative of XML and

describes units that hold topics which contain categories. Every category has pattern

elements which are used to match against a user’s input. The patterns can support wildcards.

The system converts the patterns into a tree structure (see Figure 3.1) that is used for

matching incoming sentences. As the figure shows, a random response can be used if several

responses have been specified. The algorithm is a restrictive version of the depth first search.

Dr. Wallace states that the branching factor for the first node is about 2000 for 20,000

categories. Then the average branching factor goes down to 2 and for each new branch it

decreases further. An incoming question is broken up into words and then matched against

the tree structure until an answer is found. The algorithm can be described as follows:

1. Given:
an input starting with word X, and a graph:

37

2. Does the current node contain the wildcard key _? If so, search the sub graph rooted
at the child node linked by _. Try all remaining suffixes of the input following X to
see if one matches. If no match was found, try:

3. Does the current node contain the key X? If so, search the sub graph rooted at the
child node linked by X, using the tail of the input (the suffix of the input with X
removed). If no match was found, try:

4. Does the current node contain the wildcard key *? If so, search the sub graph rooted
at the child node linked by *. Try all remaining suffixes of the input following X to
see if one matches. If no match was found, go back up the graph to the parent of this
node, and put X back on the head of the input.

5. If the input is null (no more words) and the current node contains the <template> key,
then a match was found. Halt the search and return the matching node.

HELLO ALL

* OFF

*

WHAT

IS

NEW* YOUR

NAME

1. Hi

2. Howdy

3. Hello, how are you?

1. There could be a few

exceptions.

2. Not all of them?

3. That is a rather

sweeping

generalization.

Give me an example.

I don’t know what * is.

Not much what is new

with you?

My name is Student

Advisor.

Figure 3.1. A.L.I.C.E tree structure.

38

The wildcard _ means that the sentence is starting with the text replaced with _. The

wildcard * can be replaced with any phrase from the sentence. Given A.L.I.C.E’s

straightforward design it is still more advanced than any commercial conversational software

(Bush, 2001).

My first intention was to completely base the ContextQA system on an enhanced

version of A.L.I.C.E. However, using A.L.I.C.E requires an extensive use of wildcard and

manual updates to produce quality results. Taking a base set of questions and converting

them to AIML without wildcards results in a close to useless system because it is the same as

performing exact matches directly against the questions themselves. To be able to increase

the quality each question would have to be analyzed, grouped and modified to utilize the

more advanced functionality provided by A.L.I.C.E. These additional features are things like

context specific attributes set by particular questions and answers. My second thought was to

expand questions based on synonyms and different wording to the maximum number of

permutations possible into the tree. Designing a QA system this way with completely static

questions might work well in trivial scenarios with a very restrictive domain. When the QA

domain is expanded the memory requirements of the tree will increase exponentially.

Because of the limited performance of this approach it was abandoned early in the research.

In a more complex environment where the system should cover a larger knowledge base the

requirement for a more dynamic algorithm design becomes a necessity.

Instead I decided to use A.L.I.C.E as a fallback if the QA algorithm confidence was

too low. What this means is that if the confidence is low the answer produced is unlikely to

be the correct one. This way a user will still get an answer or a continued discussion. The

base conversational AIML repository included with the A.L.I.C.E distribution is used for this

purpose. The repository has been slightly modified to fit that of a student advisor. It can be

argued how useful this is to an end user, but given that most people want to speak with an

actual person when requesting support, QA systems will have to improve in this area to

become commercially viable.

3.2.2 Automation

When designing the ContextQA system a great deal went into thinking about

automation. With the complexity of QA you want to limit the amount of work initially setting

39

up a system that covers a completely new topic. Using resources to bootstrap almost any

domain knowledge is described in more detail under the section “building a targeted

knowledge base”.

3.2.3 Responsiveness

System responsiveness was one of the topics in the QA roadmap. A QA system needs

to be close to real-time to be useful. This was also considered when designing the ContextQA

system. Having a real-time system will many times limit the type of algorithms that can be

used. This includes fast models of retrieval in the information retrieval phase. Answer

extraction must be fast and the reasoning mechanism must also execute quickly. That the

answer extraction in the ContextQA system is fast comes naturally because of its design. The

system should also be able to scale easily. All of these different performance sub tasks are

addressed in the research and system design.

3.3 PREVIOUS WORK

There has not been a significant amount of work previously done that is similar to the

QA system developed as part of this thesis. Much more work has been devoted to open

domain question answering. There has been work done previously using frequently asked

questions and answers as the knowledge source. One such system is FAQ Finder (Hammond,

Burke, Martin, Lytinen, 1995). The FAQ Finder system bases its knowledge on UseNet

which I described earlier under the section Early Question Answering utilizing Networked

Computers. The system should be classified as an Open Domain system but it can still be

compared to the work in this research for its use of question and answer pairs. FAQ Finder

will use START in its information retrieval phase. START is used to retrieve FAQ

documents that contain terms used in the user’s question phrase. The system uses a couple of

different algorithms; these algorithms will determine if the user entered question matches

any of the QA pairs in the FAQ documents returned. Statistical similarity, Semantical

similarity, and Coverage are used. For statistical similarity tf-idf (term frequency – inverse

document frequency) is used. Semantic similarity is done by analyzing each word in the

user’s question and its semantic relationship with other words in the FAQ. The coverage is

the percentage of query terms that intersect with the user’s query. AutoFAQ (Whitehead,

40

1995) is another QA system that uses FAQ documents. In the case of AutoFAQ, the FAQ

documents are also retrieved from UseNet, but maintained locally instead of searching

external resources. There is not much coverage on how AutoFAQ extracts answers. The

system compares the question a user inputs against the local repository of QA pairs to extract

an answer.

Other work using frequently asked questions is Automated FAQ Answering

(Sneiders, 1999). The Sneiders QA system uses a method he calls Prioritized Keyword

Matching. Three different types of keywords are used in this process. These three keyword

types are required, optional, and forbidden keywords. Each of these keyword types is

associated with an answer. The primary keywords have to be present in the input question to

further match it against a FAQ entry with those primary keywords. The optional keyword

does not have to be present. If several optional keywords do not intersect between the FAQ

entry and the input question, it will not be considered a match. The number of optional

keywords that cause a match to fail is configurable, but usually set between 0 and 1.

Irrelevant keywords are removed from the question. Irrelevant keywords would be the same

as stop-words. If the input question has any of the forbidden keywords listed in a FAQ entry,

it would automatically fail the comparison. The keywords are associated with FAQ entries in

a manual fashion by the administrator of the QA system. This means that the administrator of

the QA system needs to be very familiar with the system domain. The administrator also

needs to be very familiar with linguistics. The administrator will only then be able to

determine what keywords are relevant to certain FAQ entries. Sneiders also brings the

restricted domain dictionaries to an extreme. Each FAQ entry can have its own dictionary.

This includes things like singular, plural form, different spelling, split, merged form, and

synonyms. This information is also set up manually, but it is not required. The Prioritized

Keyword Matching algorithm analyzes the incoming question against features that are

associated with an answer. The algorithm does not analyze the answers, and does not have

any questions coupled with the answers in its knowledge base.

41

CHAPTER 4

BUILDING A TARGETED KNOWLEDGE BASE

A QA system designed to provide the same information that is usually obtained from

a Computer Science Student Advisor should be categorized as a targeted knowledge base.

Such a system would pose a challenge to an administrator implementing the QA system if he

is not familiar with this particular knowledge field. This unfamiliarity would make it hard to

determine what the most frequently asked questions are. Given this targeted area of expertise,

the knowledge base would best be derived from an actual repository of the most commonly

asked questions that students actually pose to their advisor. To have actual questions would

be preferable compared to building a knowledge base from questions that are just thought to

be common ones.

One benefit when modeling a student advisor is that there are thousands of student

advisors around the world. Today many Universities have started to use the Internet as a

resource to alleviate the number of questions asked to advisors. This is done by listing

frequently asked questions on University web pages.

Given the many lists of frequently asked questions available online, I determined that

this would be a very good start of my knowledge base for the system in my research.

However, the vast amount of questions to harvest tends to be a tedious task. This task

becomes difficult given the wide variety of different formats that schools use on their web

pages. Many times a question can be listed within a larger body of text where big portions of

the text need to be excluded from the final result. After researching several websites, I

determined that a system that could automatically extract questions would be the ideal

solution. This system would also provide a natural building block of a complete QA system

solution. The system would take a URL as input and proceed to parse the document that URL

leads to. It would extract and harvest questions and answers with the supervision of an

administrator. This way it is easy even for a novice administrator to build a targeted

knowledge base covering some common field. This cannot be done for every single topic, but

as of Jan 1, 2004 there were 194 million registered domain hosts on the internet. Google had

42

indexed 8 billion pages as of 2005. With the exponential growth pattern of the internet there

is a high likelihood of finding these types of resources for almost any topic.

An open-domain QA system does not have the luxury of being able to process web-

documents to the degree of the student-advisor system. Open-domain question answering

systems usually perform a certain amount of work of indexing into existing documents and

extracting certain data points. This process will facilitate quicker searches which will reduce

the time to present that answer. It will also increase the quality of the answer. However, in an

open-domain system this has to be done in a very shallow fashion due to the storage and

processing requirements. To generate a more comprehensive knowledge base to cover all

specific fields is not feasible. This is one reason why current open-domain systems mostly

deal with factoid type answers. A good example of a system like this is the predictive

annotation QA system developed by Prager, Brown, Coden, and Radev (2000). This system

processes a very large document base to extract various data points referring to factual

information. It also indexes into these documents so further processing can be done during

the answer retrieval. This system has several different ways to classify and rank the collected

information but suffers from the same flaws as all open-domain systems suffer from. The

documents might not be formatted sufficiently to describe certain facts that are critical to

correctly describe the content of the document. The facts could contradict each other. If the

document contains longer more descriptive information these cannot be extracted correctly

with this method. Most open-domain systems will not have a way of building and indexing

more descriptive answers. One reason that many open-domain systems are designed to

handle factoid type questions such as who, what, when, and where questions are that it is

much easier than dealing with how, and why type questions. Another reason is that many

researchers have been motivated by the question answering track of the Text REtrieval

Conference (TREC). The types of questions in the TREC question answering track are a

misrepresentation of questions that people usually pose. Table 4.1 shows the question type

distribution in TREC as described by Moldovan, Pasca, Harabagiu, and Surdeanu (2002).

However, when looking at 200 questions posed to the collaborative answers service provided

by Yahoo!, the distribution of how type questions are closer to 50%. Building a system that

automatically collects verbose answers for complicated questions would eliminate the need

of having to combine chunks of information to construct an answer.

43

Table 4.1. Distribution of TREC QA Track Question Types

Type Number (%)

Class 1 (Factual) 985 (67.5%)

Class 2 (simple-reasoning) 408 (27.9%)

Class 3 (fusion - list) 25 (1.7%)

Class 4 (interactive – context) 42 (2.9%)

Class 5 (speculative) 0

4.1 QUESTION HARVESTING SYSTEM

The reminder of this chapter will cover the design and implementation details of the

question harvesting system. A system that automatically retrieves questions and answers

from web based content needs to have certain features to be able to control what is being

collected. If there is no control, certain questions might be extracted that have no meaning in

the context of the target knowledge base. The system could address this problem by having

prior knowledge about what to collect. In this case the system is building the knowledge base

that would be required to make these kinds of decisions. Thus, these types of decisions are

left up to an administrator.

4.2 SYSTEM DESIGN

The question harvesting system is implemented as a web application with the Model

View Controller (MVC) software architecture in mind (see Figure 4.1). This architecture is a

good way to implement web applications. By design it separates business rules and data

handling from the logic that is responsible for rendering the user interface. This separation

also promotes code reuse which is preferable in any larger project. I picked Java as the

programming language to implement this system because it works really well when

interacting with web resources. Java is usually a good choice if the system is not required to

handle any significant processing load. With Java you can quickly develop a working

prototype without having to devote too much time to details. The system runs within a

Servlet container and can therefore be installed on almost any standard web server.

44

U
se
s

M
a
n
ip
u
la
te
sU

p
d
a
te
s

S
e
e
s

Figure 4.1. MVC software architecture.

The user interface for the FAQ parser is a wizard interface that guides the

administrator through a set of pre-defined steps. In each step he is prompted for various

decisions and formatting tasks. In the final step the resulting question and answer pairs are

permanently stored in a relational database. The resulting questions and answers can later be

accessed by administrative tools, and the main question answering application.

4.3 CONTROLLER SERVLET

The controller is implemented as a Servlet. This Servlet controls what content should

get produced based on the current state of the application. The application state is in turn

controlled by attributes that are passed back from the client web browser to the controller.

The controller Servlet class is named UI, and its UML representation can be viewed in

Figure 4.2. The UI Servlet controls a set of classes that are responsible for producing the

content that will be fed back to the client web browser. Each page or application state is

implemented by extending the Servlet-page class (also depicted in Figure 4.2) which is an

abstract class. Each Servlet-page implementation needs to at least implement the execute

method. This method should in turn generate content to be pushed back to the client.

45

Figure 4.2. Controller Servlet UML diagram.

The UI Servlet will load and instantiate one or several Servlet-page implementations

through a dynamic class-loader for each client request. The UI Servlet also provides the

Servlet-page implementation with session state for each client which is kept server-side. The

session state is where application specific parameters are stored and maintained. The session

is tied to each unique client by setting a cookie in the client web browser. The Servlet-page

implementation can read and modify session parameter names and their values during its

execution.

The Servlet-page class makes the process of generating content more streamlined for

its implementation classes. Simplicity is accomplished by providing a suite of methods that

makes it easy to generate complex text documents. This is done by the use of text templates.

A text template is a text document that can represent HTML, SQL, XML, or any type of

document that can be formatted as plain text. The templates are stored on disk and the

Servlet-page class utilizes a template factory class to gain access to these template files. A

Servlet-page implementation class can issue a push template method call with the name of a

template file. This method will cause that file to be loaded and set as the current active

template. This type of call would be done in the Servlet-page execute method call. If this

46

template is a static HTML file that was chosen because of a certain application state the

execute call can end here. The content of that template will then be pushed back to the client.

The template files also support a text-tag that can be replaced by calling the Servlet-

page insert method call. The insert method call takes a tag-name and an object in its method

signature and will replace the template tag with the resulting text of that object. This can be

done multiple times for each template tag and each template can have multiple insert tags.

What makes it more dynamic is that the Servlet-page supports to push a template into another

template and set that new template as the current active template. Complex hierarchies of

templates can be constructed by issuing push and pop template calls. The Servlet-page also

supports switching to another Servlet-page implementation by calling the change-page

method. An example of this would be when a user tries to login to an application and the

login is successful. Instead of performing a redirect roundtrip to the client the system can

automatically switch to its new state. The Servlet-page implementation also has access to all

URL parameters. These parameters are passed to the UI servlet by the get-parameter

methods.

4.4 WIZARD INTERFACE

This section describes the wizard interface that guides the administrator through the

process of building the initial knowledge base using URLs to FAQ documents found online.

The wizard interface is implemented by extending the servlet-page class described in the

previous chapter. The wizard is setup as a three step process which is described in more

detail below.

4.4.1 Wizard Interface Step One

In the first step of the wizard the administrator is presented with a screen where he is

prompted to enter a URL that leads to a FAQ document. Before starting the wizard, the

administrator would have collected several URLs that lead to documents that ideally have a

comprehensive list of questions and answers. These questions and answers should match the

context of the knowledge base that the administrator is trying to build. The URL can lead to

either HTML formatted pages or text files. The parser supports both these document types. If

the URL is not formatted correctly or leads to a page where no question can be extracted, an

47

error message will appear. This error message will describe the problem and the

administrator will have to adjust the URL or try a different one. The URL that is shown in

Figure 4.3 is one that I used when building the knowledge base for the ContextQA system. In

this process I ended up using more than one hundred FAQ documents from all the major

colleges in USA and other English speaking countries.

Figure 4.3. Step one of the FAQ parser wizard.

4.4.2 Wizard Interface Step Two

In the second step (Figure 4.4) of the wizard all questions that have been extracted

from the FAQ document will be listed on the screen. All questions are displayed with check

boxes next to them which are all initially checked. On this screen the administrator is able to

determine how well the questions were extracted from the document that he specified in step

one. If the results are not satisfactory the administrator has the option to go back to the initial

step of the wizard. If any of the questions listed on the screen are not applicable to the

knowledge base that the administrator is trying to build, he should uncheck those. This will

cause them to be excluded from the final set of questions that are permanently stored in the

knowledge base. When a complete set of questions have been selected the administrator can

click continue to go to the final screen.

4.4.3 Wizard Interface Step Three

In the third and final step (Figure 4.5), the questions with associated answers will be

listed on the screen. In this step the questions and answers can be edited for correctness. This

feature is made available so that the administrator can adjust the questions and answers to

produce exactly what he wants to store in his knowledge base. In this final step the

48

administrator will have one last option to exclude question and answer pairs. This is done by

un-checking the check box next to the question.

Figure 4.4. Step two of the FAQ parser wizard.

Figure 4.5. Step three of the FAQ parser wizard.

49

When finished the administrator would click submit or back if he is not satisfied with the

result. Submitting the questions and answers will cause them to be permanently stored in a

database. The administrator will be brought back to step one of the wizard where he can enter

a new URL or leave the interface.

4.5 DOCUMENT PARSER

The document parser is responsible for locating and extracting questions and answers

from the FAQ documents. The parser needs to be able to determine when a question starts

and when it ends. This might not seem too difficult at first; however the large amount of

badly formatted web pages, different designs, document types, and layout of these

documents, complicates the situations. The collection algorithm to adopt for these stochastic

environments can slowly evolve to be able to handle almost any type of document. Dealing

with documents containing errors and documents that are constantly changing does not affect

this particular system. Having a controlled collection mechanism will let the administrator

sort out any flawed information early on in the collection process. This way the final semi-

structured knowledge base will have a very low error rate. However, when querying an open-

domain QA system documents many times have to be re-processed to extract additional

information for complex queries. This increases the risk of trying to extract information from

documents that now have changed or include errors.

4.5.1 Parser Design

The first thing the parser does is to connect to the database where the QA knowledge

base is stored. This connection is used to determine if the URL has been parsed previously. If

the URL has already been parsed, this will trigger a message to be presented to the

administrator of the date when the URL was last processed. In any case the parser will

retrieve the document from the URL and the administrator will have the option to process or

re-process the document. The document can be either in plain text or HTML format. The

document type is usually specified in the HTTP header returned from the web server. The

parser does not determine the format of the document by analyzing HTTP headers because

many times these headers are not setup correctly.

50

The Java class that is responsible for parsing the retrieved document is the FaqParser

(see Figure 4.6). To be able to efficiently parse text documents the FAQ parser uses a more

generic text parser which is also depicted in Figure 4.6. The FAQ parser needs to have

several more complex text parsing options than the standard Java API text utilities provide.

The two main parser features are the option to parse the document forward or backwards and

to be able to save the state of the parser at any point. These two features make it possible to

implement more complex parse logic. Being able to parse forward or backwards becomes

useful when parsing forward to find the end of a question, and then trying to find the

beginning of the question. The parser would first parse forward and then backwards.

Figure 4.6. FAQ parser classes.

Some of the features of the text parser are described in more detail in Table 4.2. The

main part of the FAQ parser that is called by the wizard Servlet-page implementation takes

two attributes. These two attributes are the content of the document and an index where to

51

start parsing. If an index is not specified it will start parsing from the beginning of the

document. If the document is determined to be HTML it will start at the starting body tag of

the document to avoid any JavaScript syntax.

Table 4.2. Text Parser Features

Parse method There are several ways to parse the document text using the parsers

parse-to methods. All these methods will search the document until

a certain criterion is met. The supported criteria are the following:

parse to a single token, an index, the closest match of an array of a

set of supplied strings, the next uppercase character, or a regular

expression. Each parse-to method will return the string from the

current index to the index which matches the criteria.

Parse direction The parser can be set to parse either forward or backwards. This is

useful if the end of a question is determined by a question mark and

the start of the question needs to be determined. The parser can then

be set to parse the document backwards from the current index.

Save-points In some scenarios more than one algorithm or search needs to be

executed before information is extracted correctly. If some

algorithms fail it is usually desirable to start over from a previous

state and try something else. For these types of scenarios the parser

supports save-points. A save-point works in a similar way as the

save-points in Oracle where a rollback will exclude queries that

happened after the save-point was set. The parser has a rollback

method that brings the parser back to the state of the save-point.

Multiple save-points are supported.

Case-insensitive

parsing

For some algorithms case-insensitive parsing is preferable. In these

scenarios the parser can be set to ignore case.

The JavaScript syntax is usually written within the HTML header tag. JavaScript and

other scripting languages tend to confuse the parser because of all the special characters. The

parser will then extract questions one by one until all questions have been extracted from the

52

document. The program flow of the main part of the parser is presented in Figure 4.7. The

FAQ parser has three different steps it goes through before it determines that the parse

process has failed.

Initialize the text

parser with the

document

content

Is an index

specified?

FAQ

Document

Set parser start

index to the

specified index

Create an array

to store question

objects

Set parser start

index to the

index of <body

Is there an

occurrence?

Search for the

first occurrence

of <body

Set parser start

index to 0

Yes

No

NoYes

Call

Extract

Question

with text

parser

Is question

returned?

No

Return question

array

Add question to

array

Yes

Figure 4.7. Program flow diagram for the FAQ parser.

In the first step it tries to parse the document as an HTML formatted text document.

When implementing the text parser, I discovered that FAQ documents that were formatted

using HTML had one common feature. This feature made them easier to parse than regular

text documents. I discovered that due to the fact that the markup tags usually surround the

53

questions and answers in different ways to format the text. This fact can be adopted by the

parse algorithm to more efficiently parse HTML FAQ documents. The question mark (?) will

identify a question when written using the Latin alphabet. In the English language the

question mark will be positioned at the end of a written question. When the end of a question

is found in an HTML formatted document, the parser will continue parsing until it finds the

outer most closing HTML tag. After this is done, if a matching starting tag can be

determined, the content between the starting tag and the ending tag will be the question. This

is a somewhat simplified description of the process and the complete program flow for

parsing the HTML FAQ document is shown in Figure 4.8.

If the HTML parsing fails, the parser will resort to other means of extracting the

questions. This is shown in Figure 4.7 as the non-HTML text parsing logic. It will use two

different methods. The first method is using common question prefix strings used in FAQ

documents to determine when a question starts. Questions are commonly prefixed with

things like:

• Q: or Q. or Q)

• Question:

• Ask:

If this does not work the parser will try to use common words that usually indicate the

start of a question. Words such as ARE, CAN, DO, DOES, HOW, IF, IS, WHAT, WHEN,

WHERE, WHICH, WHO, WHY, and WOULD are some of the common words. Both these

methods will require that a question mark be available prior to the word or symbol (except

for the first question extracted). In this manner the parser can quite efficiently tackle both

HTML and plain text FAQ documents. Most FAQ documents that are found through web

searches will be formatted using HTML. With HTML formatted document the parser success

rate is much higher than plain text documents.

If the parser succeeds at extracting a set of questions from the document it will store

the question start index inside a question container object (see Figure 4.9). The parser will

use this index to revisit the website and retrieve the answers after the administrator has made

his final choice what questions to keep. The parser will also check for duplicates within the

set of questions. Many web sites will put a table of contents listing all the questions on top of

the document. This will cause the questions to be repeated with their associated answer

54

Figure 4.8. Program flow chart for the extract-question method.

55

Figure 4.9. Question and answer container classes.

further down on the page. If the first duplicate to the first question can be determined, all the

questions up until that point can be discarded. Then the table of contents will not affect the

result.

At the last step when a set of questions and answers have been determined they are

inserted into the database with the associated URL reference. The reference will indicate

where the question and answer were initially located. This can be useful for administrative

purposes. During the insertion phase if a question already exist the new qa-pair will be

discarded. If an answer already exists but the question is different, the new question is linked

to the existing answer. This way there exist a many-to-one relationship between questions

56

and answers. To increase the success rate of a question matching algorithm you would want

to map as many differently formulated questions to the same answer as possible.

During the development of the parser I found it hard to keep it backwards compatible

with documents it historically was able to parse. To solve this problem I implemented a JUnit

test which automatically could verify a new parser against a set of older documents. These

documents are stored with the distribution and can therefore be tested for accuracy any time

the parser is extended with additional logic.

4.6 QA DATABASE SCHEMA

The database role in the QA system is to store the questions and answers representing

the knowledge base. MySQL was chosen as the underlying database software (Appendix A).

This relational database supports all the necessary features needed for the knowledge base.

Features such as SQL query language to insert and extract information, and

constraints to maintain referential integrity. The schema consists of three tables which can be

viewed in the ER diagram in Figure 4.10. The database tables hold all the information that

has been extracted from the FAQ documents. The question table includes the question text

which is the question without a question mark. The resource reference ID in the question

table refers to the URL where the question was initially retrieved from. There URLs are

Figure 4.10. QA database ER diagram.

57

stored in the resource-reference table. The URL reference is not required because questions

can be entered manually into the knowledge base. The question table has a category ID

which is also not required. The status-ID field indicates if the question is active or deleted.

That way a question is never completely removed from the database.

Questions and answers have a many-to-one relationship. The natural extension would

be to support a many-to-many relationship that would be controlled by the current state of an

ongoing conversation between the QA system and the client.

4.7 RESULTS USING THE SYSTEM

I used search engines to collect URLs leading to university pages with frequently

asked questions. These searches resulted in a collection of a little more than one hundred

URLs. After running these URLs through the wizard interface, my knowledge base was

comprised of a little more than one thousand questions with answers. During this process I

made minor adjustments so that the questions fit the domain. The resulting knowledge base is

mainly targeted towards prospective CS majors, and not existing CS students seeking

answers to CS related problems.

From initial analysis it seemed that more than 30% of the questions were comprised

of How type questions. This is as expected. Students will most likely find factoid type

answers faster elsewhere. The average length of the collected questions was 9.2 words. The

full word distribution range can be viewed in Figure 4.11. The distribution shows that very

few questions have less than five words. In the TREC competition questions were collected

from various search engines such as MSNSearch and AOL (Voorhees, 2003). The average

length of questions was 10.2 words (Zaanen, Pizzato, & Moll´a, 2005). The number of words

in the TREC collection could mean that an ideal knowledge base will benefit from having an

average question length that is close to ten words. However, the TREC competition questions

length will be affected to a certain degree by the competition rules of that year.

If the number of words in a question is too small, the resulting information entropy of

the question will also be low. Low information entropy will reduce the chance to match the

question against existing questions in the repository. A very large amount of words in a

question does not necessarily increase the performance of matching algorithms either. Words

that differ will usually be penalized in the matching process in such a way that the matching

58

confidence score will be low. This balance is important when performing shallow language

parsing without complete syntactic understanding.

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 > 16

Number of words in each question

P
e
rc
e
n
t
o
f
to
ta
l

Figure 4.11. Question word count distribution.

The graph depicted in Figure 4.12 shows the initial unigram distribution of all

questions in the knowledge base. The distribution shows that how type questions are very

common. Factoid questions such as when or who type question are not that frequent.

29

20

11

7 6 5
3 3 3 3

0

5

10

15

20

25

30

35

w hat how can do w here is w hen are w ill w ho

Initial unigram

P
e
rc
e
n
t
o
f
to
ta
l

Figure 4.12. Distribution of initial unigrams.

4.7.1 Quality of QA Pairs

The quality of the collected QA pairs will heavily impact the performance of retrieval

algorithms later on. I found that the quality of QA pairs varies quite significantly depending

on what documents they were collected from. Some questions are composed of really long

sentences that will make them difficult to match against. Some questions were just too short

59

to contain sufficient information to determine a match. Sneiders (1999) writes about the

quality of question phrases.

In this paper he describes three features that characterize a good QA pair:

1. Thorough selection of required and optional keywords.

2. Good context controlled vocabulary.

3. Sufficient number of auxiliary entries.

Sneiders defines required keywords as keywords that have to be part of a question

before even trying to match. Optional keywords can be part of the question but are not

required for qualifying a question. Sneiders also states that the vocabulary should tie into the

context of the question. There should also be a sufficient number of auxiliary entries.

Auxiliary entries mean that multiple questions lead to the same answer. The QA collection

system I developed is designed to support a large set of auxiliary entries. The number of

auxiliary entries will in fact grow as more documents are parsed and the system matures.

Multiple questions leading to the same answer will suppress any bad influence of questions

that are badly formatted. Having multiple questions linked to the same answer will also

suppress the lack of performance a restricted-domain QA system can be exposed to due to

the lack of co-reference that is widely used in most open-domain QA systems (Morton,

1999).

The most noticeable drawback with Sneider’s system is that the required and optional

keywords are selected manually. This implies that an administrator is initially required to

invest a lot of time before deploying the system. Based on empirical knowledge derived from

system logs, the administrator will most likely also have to further adjust the required words.

4.8 REFINING THE QA KNOWLEDGE BASE

After examining the initial set of QA pairs in the knowledge base I found a lot of

spelling errors. There were also many domain specific words that would not be part of a

common dictionary. These domain specific words were many times spelled differently, e.g.

MSC, and MS-CS. To keep these inconsistencies would complicate the process of matching

incoming questions against questions in the knowledge base. To resolve these inconsistencies

and to normalize the database I implemented the following features to be part of the QA

system:

60

1. Spell checker.

2. Global dictionary.

3. Domain specific dictionary.

4. Global substitutions.

5. Domain specific substitutions.

4.8.1 Spell Checker

Although spell checkers are uncommon in QA systems they can greatly benefit from

this feature. In a restricted domain the spell checker can be used to refine the knowledge base

so that all different terms are correctly spelled. With a spell checker the system can also

ensure that incoming sentence terms are correctly spelled which in turn increases the

possibilities of finding correct answers. The spell checker I ended up using is an open source

project named Jazzy. I wrapped the spell checker in a tool that guides an administrator

through the entire set of questions. Any time a misspelled word was encountered it would be

presented to the administrator with associated suggestions on how to correct it. The spell

checker itself can be instantiated with several different dictionaries. For this initial task I

wanted a very large dictionary that would cover a big portion if not all of the English

language. There are several dictionaries and word lists freely available to the public. I used

the 12dicts which holds approximately 80.000 English words. The spell check process works

as follows:

1. Tokenize sentence words.

2. Remove stop words.

3. Check each word for misspellings.

4.8.2 Domain Specific Dictionary

The domain specific dictionary was also extracted by using the spell checker. All

domain specific words were flagged as misspellings. After the domain specific dictionary

had been created it got incorporated into the spell checker so that these words would not be

flagged in future spell checks. A domain specific dictionary or ontology is a very strong

feature for restricted QA systems.

61

4.8.3 Global and Domain Substitutions

To be able to automatically resolve domain specific substitution a substitution table

was created. With this table substitutions such as MSC and MS-SC can automatically be

resolved to one common term. A global substitution table (see Table 4.3) was also created.

The global substitutions mostly consist of truncated words such as:

Table 4.3. Example of Global Substitutions

Term Substitution

what’s what is

who’s who is

how’s how is

couldn’t could not

The normalization of the existing QA knowledge base is also implemented as an

automated process where the administrator will be presented with suggested substitutions if a

question is encountered that is not fully normalized.

4.9 EXTENDING THE QA KNOWLEDGE BASE

When trying to match questions against existing QA pairs in the knowledge base, it is

important to have many auxiliary questions. These auxiliary questions are linked to the same

answer but should all be formulated somewhat differently.

• Why do I need a master’s degree?

• Can you give me a reason why I should pursue a master in computer science?

• Why get a graduate degree in computer science?

In the examples above we can see that not only is the MS degree formulated

differently but the questions are not similar at all. This will increase the chances of a possible

match. Extending the knowledge base this way can either be done manually by the people

maintaining the system, or by some automated way that rephrases existing questions. It is

difficult to rewrite questions efficiently without a complete comprehension of the English

language. The approach I took was to write an automated system to translate questions from

English to an intermittent language, and then back to English again. An example on how

62

sentences get rephrased can be seen in Table 4.4. The idea is that for most translation

services this process will render a slightly different sentence than the original.

Table 4.4. Rephrasing Questions through Translation

Language Question

English How do I contact my advisor?

German How do I approach my advisor?

Chinese Simpl. How do I relate with mine consultant?

Dutch How do I contact my consultant?

French How do I contact my adviser?

Italian How I put myself in contact with my councilman?

Japanese Do I how communicate to my advisor?

Russian How I will be connected my adviser?

In this manner, I can obtain a training set with the size of the knowledge base times

the number of languages used. The translation services I used for this task is provided by

Systrans, and Google. Most Anglo-Saxon languages provide quality translation when

questions are rephrased. However, some other languages might actually degrade system

performance because of badly formatted sentences. To avoid badly formatted sentences, the

system needs to verify the syntactic accuracy of a sentence. This can be done in several

different ways. I decided to post n-grams to Google to determine if the word combination

exists. This is far from a scientific approach but it does provide a crude way to determine

accuracy. To determine how well this would work I tried this approach on the existing

knowledge base. Bigrams, trigrams, and quadrigrams were used for the test. The results can

be viewed in Figure 4.13.

When performing this type of verification one will rely on the notion that web

documents are always formatted correctly. This of course is not true. If the sentence being

tested is worded slightly wrong, there is a high possibility that someone else made the same

mistake. If an n-gram is worded incorrectly within any content that has been indexed by the

search engine it will be flagged as valid. Any domain specific words included in an n-gram

will also increase the chances of failing verification. When analyzing the results, the bigram

63

test qualifies the most of the questions as valid (98%). The Trigram test produces almost the

same result as the bigram test, but when using quadrigrams the results dropped significantly.

When looking at the quadrigrams that failed, I discovered that most of them fail due to

domain specific words. The other portion of quadrigrams that failed was due to badly

formatted questions in the existing knowledge base. Quadrigrams failing due to domain

specific words could be solved by constructing a domain specific ontology. This would

mirror WordNet where the hypernym would replace the domain specific term. This way

SDSU (San Diego State University) would be replaced with college. However, 84% is still

sufficient to produce a large enough amount of auxiliary questions. Another way to limit the

number of badly formatted questions would be to limit the search to use trusted sources such

as dictionaries and lexicons.

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

Invalid 2% 5% 16%

Valid 98% 95% 84%

Bigram Trigram Quadrigram

Figure 4.13. Results for knowledge base n-gram verification.

When analyzing the quadrigrams that passed the verification, most of them were

correctly worded. This shows that quadrigrams will limit the search results sufficiently to

avoid most of the badly formatted phrases. As the amount of indexed pages grow the n-gram

might have to be increased to limit the amount of badly formatted sentences. When analyzing

the results, it is apparent that the search misses has an exponential trend. This would limit the

problem of badly formatted sentences when more searchable content is indexed.

64

After using five different languages with n-gram verification, I was able to extend the

knowledge base 2.29 times its original size. The number of n-grams that failed was highly

dependent on what language was being used. This can be seen in Figure 4.14.

0%

20%

40%

60%

80%

100%

Invalid 82% 82% 73% 71% 63%

Valid 18% 18% 27% 29% 37%

French Italian German Portuguese Spanish

Figure 4.14. N-gram verification results across different languages.

Shorter questions tend to have a much greater chance of generating a correct

rephrased sentence. Almost none of the longer questions were translated correctly.

4.10 ADMINISTRATION INTERFACE

To make it easier for an Administrator to manage the ContextQA system there is also

an administrative interface available. This interface is described in more detail in

Appendix B. Having a useful administration interface is very important. It is especially

important to have search capabilities that closely match that of the main QA system. This

way an Administrator can analyze logs and quickly perform the same type of searches to find

answers that might require additional auxiliary questions.

65

CHAPTER 5

CONTEXTQA SYSTEM

From a high level view the ContextQA system is built up by three different parts

which are depicted in Figure 5.1. These three parts are the client software, the web server,

and the database. This design is comparable with most web applications. The client software

and the database system are both insignificant in comparison with the amount of logic

implemented in the application server.

Figure 5.1. ContextQA system.

5.1 CLIENT

The QA client is implemented as a flash application. The flash client communicates

with QA services running on the application server by using XML requests that are sent over

HTTP. This way the client only needs to be retrieved once from the application server. The

interface never needs to be refreshed as regular HTML applications. Light weight queries and

responses are transmitted between the client and the services residing on the application

server to make the application quick and responsive. When the client is first instantiated the

user is prompted to input a name. The name is recorded so that more interactive and personal

communication can be done throughout the session. The main client interface is then shown

which includes an input row where questions can be entered and a main window where

responses to questions are presented; see Figure 5.2. In addition to the response a set of

related questions will also be presented in a window at the bottom of the screen. Related

questions are determined by the questions that receive a high confidence when the QA

66

system matches the original question against questions in the repository. Any of these related

questions can be selected and sent back to the system as a new question. This is an efficient

way to make sure the QA system always presents something related to the user question.

Figure 5.2. ContextQA client interface.

5.2 APPLICATION SERVER

The application server contains various services that can respond to client requests.

These services share the client session. There are also several sub-systems that are

instantiated at the point the application server is brought online. One of these sub-systems is

A.L.I.C.E which is used as the fallback conversational system when no matching questions

are found by the QA system. The main service that is called by the client continuously is the

67

service that handles incoming questions. This service will refine incoming questions and pass

them to the QA agent implementation. The QA agent implementation then returns a set of

QA pairs with associated confidence scores. Each agent also supplies its own confidence cut-

off score that will indicate whether or not to present the answer has sufficient confidence to

be presented to the user. The process is described in Figure 5.3.

Normalize Question

User Submits

Question.

Question

Formulate

response

Initialize System

Is system

initialized.

Initialize

A.L.I.C.E.

Initialize

WordNet.

Initialize Global

and Domain

Substitutions.

Initialize Global

and Domain

Substitutions.

Initialize QA

Agent.

No

Apply Global

Subsitutions.

Apply Domain

Subsitutions.

Remove non

letters.
Yes

Yes

Question

a single

sentence?

Set Error, only

on sentence

allowed.

Spell check non

stop words.

Spelling

errors?

Make

suggestions for

misspelled

words.

Yes

No

Set top ranked

question as

answer if

confidence

exceeds cutoff.

Call QA

Agent to

resolve

related

questions.

No

Figure 5.3. High level process flow of the ContextQA system.

5.3 DATABASE

The database holds several resources that are mainly used by the QA agent

implementations. The database holds global and domain dictionaries, substitution tables, stop

word lists, etc. Common task for all agents are to use refined database indexes for performing

fast lookups to get candidate QA pairs. Resolving candidate questions is described in more

detail in the system evaluation section.

68

CHAPTER 6

SYSTEM EVALUATION AND RESULTS

This chapter provides an in depth analysis using different QA algorithms for the

restricted-domain QA system developed for the ContextQA system.

6.1 MEASURING RESULTS

To accurately measure the performance of a QA system you need metrics that can

provide a good indication on how the system would perform in a real world scenario. In QA

it is important to retrieve documents that contain the answers or part of the answer that will

satisfy the user question. In the ContextQA system where the knowledge base is constructed

by QA pairs, it is important to retrieve questions that match what the user writes. The

precision and recall parameters are the most commonly used indicators to measure IR

retrieval quality Salton and McGill (1983), and Rijsbergen (1979). Rijsbergen defines

precision as the proportion of relevant material actually retrieved in answer to a search

request. The precision parameter describes the relation between the number of relevant

documents and the total number of documents returned from a user query (see Figure 6.1).

Figure 6.1. Precision and recall.

Given that |Rr| are the number of relevant documents retrieved, and |Ri| are the

number of irrelevant documents retrieved, the precision is given by the following equation:

69

ir

r

RR

R
precision

+
=

Rijsbergen (1979) defines recall as the proportion of retrieved material that is

actually relevant. Recall describes the relation between the number of relevant documents

that were retrieved |Rr|, and the number of relevant document that was not retrieved |Nr|.

rr

r

NR

R
recall

+
=

The recall and precision parameters are usually inversely related. A high recall

number will result in a low precision number and vice versa. A traditional IR system will try

to maximize both recall and precision. In my scenario, I am trying to retrieve questions that

match the user question. In this manner, the goal is slightly different. I need to maximize the

recall parameter in the first IR step of the QA pipe line. This is done so that the question

matching algorithm has as much relevant data to work with as possible. In my scenario, I

want to have a recall number close to 100% when retrieving the first set of questions to

evaluate. If the recall value is low, this will hinder any type of matching algorithm,

especially those relying on auxiliary questions leading to the same answer. The bad results

will then propagate through the entire QA pipeline. An easy way to improve the recall rate

would be to retrieve as many QA pairs as possible. Some restricted-domain QA systems

evaluate all documents in the knowledge base. Retrieving all documents is not a good idea

because it hinders the system to scale efficiently when adding more complexity. An example

would be a system intensive matching algorithm.

One algorithm used in the TREC QA competition is the Mean Reciprocal Ranking

(MRR) algorithm. The MRR algorithm considers the rank of the first correct answer in a list

of possible answers. If a system returns the correct answer first in the list it retrieves a 100%

score. If the correct answer is in the fifth slot it retrieves a 20% score. The reciprocal rank

has several advantages as a scoring metric. It is closely related to the average precision

70

measure used extensively in document retrieval. It is bounded between 0 and 1, inclusive,

and averages well (Voorhees, 1999).

Another important aspect when measuring QA systems performance is the ability to

determine if an answer does not exist. It is always more important to be able to determine the

non existence of an answer than to provide an answer that is faulty.

There have also been several additional methods developed on how to measure the

performance of QA systems (Breck et al., 2001; Radev, Qi, Wu, & Fan, 2002). These

methods are more geared toward the specifics of a QA system than those that are used to

measure standard IR performance. Things like a systems response should also play a role in

determining the overall system performance. In a QA system the response time should be

instant but many times it is not.

6.1.1 The Importance of a Good Test Collection

When developing a document classification system, the test collection can usually be

obtained by extracting a portion of the already classified documents. Given the QA

knowledge base a certain amount of the auxiliary questions that are linked to the unique

answers could be extracted to build such a test collection. However, this would provide a bias

towards the content of the knowledge base. Even a trivial restricted-domain requires a

significant number of questions to not become completely useless. This is why it is important

to test the system using domain related questions obtained elsewhere. An unbiased test

collection would be a set of NL questions that relates to the restricted-domain but were

formulated completely independently of any knowledge of the QA system. To obtain such a

set of questions I ran the same question collection process that I used when building the

initial knowledge base excluding the last step where the questions and answers are

incorporated in the knowledge base. This way I was able to collect a complete set of

unrefined questions that you would expect actual clients would write. Each of these questions

has one of two distinct features. Either an answer exists, or does not exist in the knowledge

base. This way metrics can be provided on how good the QA system is able to determine if

an answer exists or not. This is one of the metrics to measure QA performance included in

the TREC competition (Voorhees, 1999). Excerpts from the test collection is provided in

Appendix C.

71

6.1.2 Automated Test Framework

To be able to quickly determine the quality of an algorithm the ContextQA system

was equipped with an automated test framework where a new algorithm can be run against

the test collection and a complete set of metrics are produced.

6.2 RESOLVING QUESTION CANDIDATES

When examining the generalized QA system in Figure 2.4, it shows a streamlined

process where a QA system applies certain logic in each step which will either expand or

limit the data set that is supplied for the next step. After the question has been analyzed the

query to retrieve relevant QA pairs is constructed. If any relevant question or answer remains

unresolved after this step, the error will propagate through the entire system reducing its

performance. This is why it is important to be able to retrieve as much information as

possible at this point in the process. The information extracted at this stage will not be visible

to the user in any way so the precision is not as important as the recall. To maximize recall

the ContextQA system utilizes an answer index where a large amount of question terms are

linked to existing answers. This index is constructed by a separate process which iterates

through each answer in the knowledge base. The following steps are executed for each

answer:

1. Resolve all questions leading to the answer.

2. Remove stop words.

3. Resolve all term synonyms using WordNet.

4. Apply Porter stemmer (Porter, 1980) to each term.

5. Insert resulting terms in index table.

Given the WordNet synonym term expansion this index becomes very

comprehensive. Just using unigrams to resolve synonyms can limit the number of synonyms

when using WordNet because WordNet include n-grams. To accommodate for this, step

three also includes bigrams and trigrams extracted from the original question to resolve

synonyms. In step three, the average number of synonyms resolved per question was 27.65.

Any resulting synonym is broken down into unigrams, and stemmed in step four.

Because polysemous words can be part of multiple synsets I extract synonyms from

each synset for all senses. I do this because the system currently does not have any way of

72

determining the word sense (word sense disambiguation) for the word within a sentence. This

approach could cause problems or decrease performance if the sense is in fact different

between the questions being compared. However, in restricted domain question answering

this problem will be limited because the restricted domain will increase the chances that the

word sense is the same. An example could be the word interest. This word could mean

interest in taking some course work, or the interest on your bank account. The bank interest

word sense is unlikely to be part of a restricted domain that deals with giving advice to

prospective students. Adding additional shallow language parsing logic to the QA system

will further limit the impact of this potential problem.

The sole purpose of this index is to retrieve as many potential question candidates as

possible while still limiting the result to only a subset of all questions. A question answering

system which would rely only on this mechanism to produce a final set of answers would

produce poor results from excluding stop words. The value of stemming versus

morphological query expansion was analyzed in detail by Bilotti, Katz, and Lin (2004). The

conclusion was the morphological expansion provided better results. The approach taken

here uses both expansion and stemming. This will increase the recall even further which is

the main purpose.

There can also be a drawback when using an index based on stemmed words. Using

stemming in the process of scoring question candidates can hurt performance. Stemming

words can change the meaning of a sentence. An example could be the sentence, Name the

fastest runners. Using the Porter stemmer runners is reduced to runner and the question that

should produce a list of the fastest runners is reduced to just providing the fastest runner. The

same goes with stop words. When removing stop words it can also hurt performance. If stop

words such as Who or When are removed it can limit the meaning of the question. It is

important to understand when to expand a question phrase and when to reduce it.

6.3 QUESTION SELECTION AGENTS

The ContextQA system is implemented in a modular way which allows it to easily

replace the core set of algorithms that match incoming questions against questions in the

knowledge base. These algorithms are controlled by an agent. The agent receives a plain text

question and responds with a list of QA pairs ordered by relevance. Each qa-pair has a

73

confidence score. This confidence score is compared against a cut-off score to determine if

an answer exists. The cut-off score for the confidence number can be different for different

agents. If the top rated QA pair falls below the cut-off level this is an indication that the agent

was unable to find an answer. This is called a NIL response. If the confidence score ranks

above the cut-off confidence score the answer portion of the QA pair will be presented to the

user.

6.3.1 Agent Resources

Each QA agent has access to various base resources that exist within the knowledge

base of the ContextQA system. If any other resources are needed the agent can set those up in

the initialization phase of the system. This section lists the basic resources available to all

agents.

6.3.1.1 QUESTION INDEX

To limit the number of questions that will be evaluated during the matching phase and

to maximize question recall a lookup table was created. This table maps question words to

answer ID's. This table is generated when the QA knowledge base has been normalized.

Before the process is executed the knowledge base is verified to be completely normalized.

For every question any word or word combination (up to tri-grams) is included if it exists in

the domain dictionary. The following logical sequence builds the lookup table.

Iterate across each word

 Remove stop words

 Extract all possible synonyms from WordNet

Iterate across each bigram

 Extract all possible synonyms from WordNet

Iterate across each trigram

 Extract all possible synonyms from WordNet

Create a unique set of synonyms and insert in the synonym answer mapping table.

74

The maximum number of word combinations that could qualify in a sentence of n words is

expressed below:

 F(0) = 0

 F(1) = 1

 F(2) = 3

 F(n) = 3n - 3 (for n > 2)

However, this situation will be highly unlikely when using free-form questions which will

almost always include several stop words the longer the sentence is. I evaluated the approach

to use a stemmer to index the questions but determined that this led to worse results if not

retrieving a very large collection of potential candidates. Using the raw words and adding

morphological variations extracted through synsets in WordNet was more efficient. This

follows in line with what Bilotti and Katz (2004) found.

6.3.1.2 DOMAIN DICTIONARY

In a restricted-domain QA system it is very important to have a domain specific

dictionary. In an open-domain QA system you can usually rely on co-occurrence to

determine domain specific words. In a restricted-domain system you will not have that luxury

and especially not when the knowledge base is generating from QA pairs. Each agent has

access to a domain specific dictionary that can be used for spelling correction or other

domain specific logic. This domain dictionary was generated by the spelling correction

process that is part of the ContextQA system.

6.3.2 Agent Results

This section presents the results from different agents that all implement different QA

algorithms. Each agent follows the same model where it receives an NL question and returns

a set of potential matches. The last agents also provide a confidence level which indicates if

it was able to find an answer at all. For each agent the same set of performance metrics are

presented.

75

6.3.2.1 AGENT HOMER

The Homer agent tokenizes the question entered by the user into a bag of words. The

resulting bag of words is then used as a query constraint against the existing repository of

questions in the database. The resulting list of questions is then sorted based on relevance.

The relevance is determined from the number of words that match words in the original

question. Having the query be unconstrained result in a significant amount of questions to

match against for each new question that the agent process.

6.3.2.2 AGENT HOMER PERFORMANCE METRICS

Table 6.1 lists the total number of questions, the number of questions were an answer

exists, and the number of questions that does not have an answer in the repository.

Table 6.1. Test Collection

Total test questions 44

Total test questions where answer exists. 34

Total test questions where no answer exist (NIL) 10

The following metrics (see Table 6.2) are based on the first answer the agent returns.

A NIL-answer means that the agent does not think there is an answer available. The Homer

agent does not have the capability to determine if a question results in a NIL-answer and only

returns the highest scoring question each time.

Table 6.2. Agent Homer Performance Metrics

Correct answers 13

Incorrect answers 31

Correct NIL answers 0

Incorrect NIL answers 0

Total correct answers 13

Total incorrect answers 31

Total correct answers / total questions 0.30

Average answer response time 290 ms

76

Figure 6.2 shows that this agent has thirteen correct answers at index one. This is the

most important index because that will be the answer that is produced. The correct answers

should have as low index as possible

0

5

10

15

20

25

30

Index of suggested question matches

C
o
rr
e
c
t
a
n
s
w
e
rs

Per index 13 3 4 0 1 1 0 1 0 1

Accumulative 13 16 20 20 21 22 22 23 23 24

1 2 3 4 5 6 7 8 9 10

Figure 6.2. Agent Homer correct answers per index.

The MRR score listed in Table 6.3 is good compared to most open-domain qa

systems.

Table 6.3. Agent Homer Aggregate Performance Metrics

Mean Reciprocal Ranking (MRR) 0.60

Total run time 12.74 seconds

This agent benefits from the fact that database queries are executed on the entire

knowledge base. This would not be a valid approach in a real-world environment unless the

system has access to significant resources. The results from this agent show that even with

limited complexity a restricted domain system can produce results comparable to some of the

better systems that attend the TREC competition.

6.3.2.3 AGENT FRY

The Fry QA agent is similar to the Homer agent except it is utilizing a Porter stemmer

on each non-stop-word to build the database query. The query is then executed on a WordNet

77

synonym answer mapping table that has been generated previously. The question entered by

the user goes through several steps of refinement. The question is first tokenized into a list of

words. The list of words is then normalized based on global substitutions and domain

specific substitutions. Stop words are removed from the list. Each word is stripped of suffix

and prefix using the Porter stemmer. The resulting terms are then used as a query constraint

against the WordNet synonym answer mapping table in the database. This query is limited to

a maximum of 50 rows. This limitation is introduced to make sure the system is realistic in a

real world scenario where queries could not be executed against the entire repository of

questions each time. The Fry agent will rely on this initial IR phase being as good as

possible. If the sub-set of questions retrieved during this phase does not contain the correct

answer it does not matter how good the analysis is after that point. That means that any

question that is not part of the result will not be considered in the subsequent logic. The

previous agent Homer executed queries against the entire repository which resulted in far

larger data-sets to consider for possible matches. The Fry agent process the resulting

questions based on maximum term matching frequency. The results show that even though

this agent only considers a sub-set of the questions it scores a higher MRR. This shows the

benefit of the synonym answer mapping table. Due to the limited number of questions to

compare against the total runtime is also greatly improved compared to the Homer agent. All

the agents except the Homer agent utilizes the synonym answer mapping table for their initial

IR phase.

6.3.2.4 AGENT FRY PERFORMANCE METRICS

Table 6.4 lists the total number of questions, the number of questions were an answer

exists, and the number of questions that does not have an answer in the repository.

The following metrics (see Table 6.5) are based on the first answer the agent returns.

A NIL-answer means that the agent does not think there is an answer available. The Fry

agent does not have the capability to determine if a result should be labeled as a NIL-answer.

Figure 6.3 (p.79) shows that this agent has eighteen correct answers at index one.

This is the most important index because that will be the answer that is produced. The correct

answers should have as low index as possible.

78

Table 6.4. Test Collection

Total test questions 44

Total test questions where answer exists. 34

Total test questions where no answer exist

(NIL)

10

Table 6.5. Agent Fry Performance Metrics

Correct answers 18

Incorrect answers 26

Correct NIL answers 0

Incorrect NIL answers 0

Total correct answers 18

Total incorrect answers 26

Total correct answers / total questions 0.41

Average answer response time 150 ms

The MRR score in Table 6.6 show that the agent scores well compared to most open-

domain qa systems.

With this agent there has been a significant increase in the number of correct answers

compared to the previous one. We can also see that the correct answers sharply drop off after

the first suggested answer which is the ideal behavior.

Table 6.6. Agent Fry Aggregate Performance Metrics

Mean Reciprocal Ranking (MRR) 0.71

Total run time 6.59 seconds

6.3.2.5 AGENT BENDER

The Bender QA agent is similar to the Fry QA agent except it extends the portion that

qualifies the answer by utilizing Levenshtein word edit distance. A confidence limit is also

set to determine if a NIL answer should be returned. As described earlier being able to

79

0

5

10

15

20

25

30

Index of suggested question matches

C
o
rr
e
c
t
a
n
s
w
e
rs

Per index 18 3 2 1 1 0 0 0 1 2

Accumulative 18 21 23 24 25 25 25 25 26 28

1 2 3 4 5 6 7 8 9 10

Figure 6.3. Agent Fry correct answers per index.

determine if an answer is not available is very important for a QA system. The system should

be able to let the user know that it does not know the answer to the question. If the system

replies with a faulty answer it can damage the user’s confidence in the system or even worse

the user can damage something else because of the answer. The minimum edit distance is

measured on the questions after they have gone through a process where they are modified

for maximum synonym match. WordNet is used to retrieve a list of synonyms for all non

stop-words in each question. This list is analyzed and both questions are adjusted to match as

closely as possible based on synonyms or terms that intersect both questions. The confidence

score is then determined by taking the total number of words minus the edit distance, and

then divided by the total number of words. The result is a number between 0, and 1.

What I found with this agent is that if stop words are not included in the edit distance

calculation the performance is reduced significantly. This is because stop words can have a

great importance especially in a QA system. If words like Where, and Who are removed the

meaning of the question is likely to be lost.

6.3.2.6 AGENT BENDER PERFORMANCE METRICS

Table 6.7 lists the total number of questions, the number of questions were an answer

exists, and the number of questions that does not have an answer in the repository.

80

Table 6.7. Test Collection

Total test questions 44

Total test questions where answer exists. 34

Total test questions where no answer exist (NIL) 10

The following metrics (see Table 6.8) are based on the first answer the agent returns.

With a NIL-answer means that the agent does not think there is an answer available.

Table 6.8. Agent Bender Performance Metrics

Correct answers 11

Incorrect answers 7

Correct NIL answers 9

Incorrect NIL answers 17

Total correct answers 20

Total incorrect answers 24

Total correct answers / total questions 0.45

Average answer response time 3.01 seconds

Figure 6.4 (p. 81) shows that this agent has seventeen correct answers at index one.

This is the most important index because that will be the answer that is produced. The correct

answers should have as low index as possible. The MRR score in Table 6.9 shows a slight

increase since the previous agent.

Table 6.9. Agent Bender Aggregate Performance Metrics

Mean Reciprocal Ranking (MRR) 0.72

Total run time 132.37 seconds

This agent provides a slight step forward in performance compared to the previous

agent. Given the introduction of a confidence level the agent removes some of the valid

answers but compensates the total correct answers with its capability to determine if an

81

0

5

10

15

20

25

30

Index of suggested question matches

C
o
rr
e
c
t
a
n
s
w
e
rs

Per index 17 4 3 1 0 1 1 0 0 0

Accumulative 17 21 24 25 25 26 27 27 27 27

1 2 3 4 5 6 7 8 9 10

Figure 6.4. Agent Bender correct answers per index.

answer is available or not. The MRR score has also been slightly improved because of a

higher density towards index one in the answers per index table. The limited test collection of

44 questions will limit the noticeable impact of modifying the algorithm. The impact of a

small change can easily be misrepresented. Figure 6.5 show a graph which depicts this QA-

agent running with different confidence cut-off levels against the test questions. The chart

shows many interesting aspects of question answering. The following are the different labels

associated with the query results:

• Correct - A correctly answered question.

• Incorrect - An incorrectly answered question.

• Correct NIL - A correct answer that states that an answer does not exist in the
knowledge base.

• Incorrect NIL - An incorrect answer that states that an answer does not exist in the
knowledge base.

The X-axis of the graph represents the confidence cut-off value where the agent considers the

question to match the question the user inputs. For a very small confidence cut-off such as 1

the number of questions that match is relatively high ~40%. However, the number of

questions that are considered to match but in fact are not correct is close to 60%. This is not

82

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10

Incorrect NIL

Correct NIL

Incorrect

Correct

Figure 6.5. Confidence levels versus query results.

good performance for a QA-system because 6 out of 10 questions will result in the wrong

answer. By increasing the confidence cut-off, more questions will start to qualify as NIL.

This means that the qa-agent does not think there is a matching question and will respond

with nothing. In the case of the ContextQA system this means that the system will fall back

to the A.L.I.C.E conversational system. The system will respond with something that

attempts to continue the conversation with the client. The ContextQA system also show the

questions that the agent scored with a high confidence score as a list under the main

interface.

Another interesting detail is the so called "sweet spot" for the confidence cut-off. This

cut-off will be different for the type of system that is developed. For example a medical

system you would never accept an incorrect response. In the above case that cut-off would

correspond to a 9 or 10 setting. With this setting you would render the system quite unusable

given all the NIL responses but no patients would be hurt in the process. The above agent is

set to operate on a level 5 confidence. This level corresponds to a combined NIL and regular

correct answer rate of 45%. If you include the faulty NIL responses which are adding another

23% of A.L.I.C.E conversations leaves us with only 20% of faulty responses. These results

would probably not beat a real student advisor but the results are still good.

Another thing that would improve the above chart for the ContextQA system is the

initial search algorithm that is used to determine the candidate set of questions that are used

83

for matching. The recall rate of this algorithm is not considered in the above chart. Only the

total correct answers that exist in the knowledge base are considered. This means that the

quality could in fact be improved if more questions were considered. However, the

responsiveness of the system would degrade linearly with the amount of new questions

added. I did not want to consider all questions, because I wanted to mirror more of a real-

world scenario where you do not have an infinite amount of resources.

6.3.2.7 AGENT YODA

Many of today QA systems have several modules that extract certain features from

the question and the answer candidates. Given the usually non-linearly separable solutions I

determined to utilize a set of feature extracting algorithms that would each provide either

confidence related information or a set of numerical features. These results are then fed into a

Neural Network which in turn provides a confidence number which determines the final

rankings of the questions. Limiting the number of hierarchical levels in a set of machine

learning algorithms is usually a good idea if the training data is not very large. Otherwise the

lower level algorithms will not receive sufficient data to be able to provide correct

classifications. The complexity of measuring the effects of combining different question

matching algorithms grows exponentially harder with the number of techniques used. The

complexity eliminates the possibility of trying to manually determine the value of combining

different techniques. The last agent implementation demonstrates that slightly altering some

values can have a significant impact on the results. Most of today’s QA systems, both open-

domain, and restricted domain are becoming more complex by adding more parts. It is

difficult to determine the impact of a new algorithm when used in combination with other

algorithms. This is because the result of a certain algorithm is many times fed as input to the

next algorithm. Many times when introducing a new algorithm, it affects other details of the

system based on where they are positioned in the QA system’s pipeline. A widely accepted

approach when creating a function from a series of observations is using an artificial neural

network (see Figure 6.6).

Learning a non-linear multi dimensional function can be taught through supervised

learning. This is a useful feature given all descriptive metrics can be extracted from all

previous agents. A neural network also fits the problem because it can model non

84

deterministic and stochastic problems. The input to the neural network within the Yoda agent

is the same confidence number that drives the decision of the Bender agent. In addition the

Yoda agent has two more inputs. The full word count difference and the word count

difference with stop words removed between the two questions that are compared.

Figure 6.6. Neural network.

6.3.2.8 AGENT YODA PERFORMANCE METRICS

Table 6.10 lists the total number of questions, the number of questions were an

answer exists, and the number of questions that does not have an answer in the repository.

The following metrics (see Table 6.11) are based on the first answer the agent returns.

With a NIL-answer means that the agent does not think there is an answer available. The

confidence level for the Yoda agent is the direct output from the neural network. The

confidence level for the Yoda agent had to be set really high to get any type of performance.

Table 6.10. Test Collection

Total test questions 44

Total test questions where answer exists. 34

Total test questions where no answer exist (NIL) 10

85

Table 6.11. Agent Yoda Performance Metrics

Correct answers 12

Incorrect answers 15

Correct NIL answers 6

Incorrect NIL answers 11

Total correct answers 18

Total incorrect answers 26

Total correct answers / total questions 0.41

Average answer response time 3.94 seconds

Figure 6.7 shows that this agent has fifteen correct answers at index one. This is the

most important index because that will be the answer that is produced. The correct answers

should have as low index as possible. The MRR shows in Table 6.12 (p. 86) shows a slight

degradation since the previous agent.

0

5

10

15

20

25

30

Index of suggested question matches

C
o
rr
e
c
t
a
n
s
w
e
rs

Per index 15 6 0 2 0 1 1 1 0 2

Accumulative 15 21 21 23 23 24 25 26 26 28

1 2 3 4 5 6 7 8 9 10

Figure 6.7. Agent Yoda correct answers per index.

The results show that there was degradation in performance compared to the previous

agent. This shows that adding the additional two indicators used as input to the network did

86

not provide additional data to segment the questions correctly. I still believe that using a

neural network will be beneficial when adding more ways to classify questions.

Table 6.12. Agent Yoda Aggregate Performance Metrics

Mean Reciprocal Ranking (MRR) 0.68

Total run time 173.51 seconds

6.4 CONCLUSION

The restricted domain system constructed as part of this thesis fits best in a static

environment where the answers do not change frequently. This way the system can slowly

evolve to be more efficient on providing correct answers based on the knowledge base. The

system would need certain enhancements to better fit in a more dynamic environment where

the knowledge source changes each day. Such as a quickly expanding source of data or data

sources from news feeds that are constantly updated. In these scenarios you would need to be

able to tie answers to external resources that are not statically contained within the system

itself. An example of this could be results from a test which is stored in a database. If an

answer node had logic to retrieve data from this database it would be able to construct a

query based on the question that led to the answer and extract information from that database.

With the ContextQA system I have shown an efficient way on how to bring open

domain QA resources to use within a restricted-domain QA system. I have also shown

throughout the document that you almost certainly will need to develop targeted and trusted

systems for QA to ensure quality and reliability. The ContextQA system performs equally as

well as some of the top performing systems in the TREC competition.

87

CHAPTER 7

FUTURE WORK

While writing this thesis I have evaluated several possible approaches and topics

about question answering systems. In this chapter I present some ideas and topics that were

not researched in detail but could serve as a natural continuation of the work I have started.

To simplify the ContextQA system even further it should become completely

automated. This should be a relatively easy task given that the system is already designed

towards automation. With some minor changes some of the existing manual steps could be

eliminated. It should be possible to perform web searches within the system. The search

should be expanded to target FAQ pages that include the terms within the search. When

qualifying newly found questions the system should show existing repository questions that

correlate with the new question. By showing similar questions an administrator could

automatically link new questions to existing answers. When new questions are found they

should automatically be normalized to fit that of the repository’s domain and common

dictionaries. When an administrator has collected or entered new questions and answers the

indexes and resources used by QA Agents should automatically be regenerated. Spell checks

should be done automatically on new questions. Domain specific words and terms should

automatically be detected during the collection phase. Extracting these words and terms

would be done by spell checking and analyzing the existing domain dictionary. Ideally the

domain dictionary would be extended to cover relationships and include complete restricted

domain ontology information. The same format as WordNet could be used to expose such a

feature.

The system should be extended to support question templates. With question

templates it easier to answer factoid type questions. An example of a factoid question

template could be: What is a *. These templates could be extended to support more complex

wildcards that ties into several question types. Another way to utilize question templates

would be for query refinement. If the question: What is a golden retriever? Does not result in

an answer it could be rewritten as What is a dog? This translation could be done by utilizing

88

WordNet’s hypernym relationships. Other templates could be directly tied to database

queries. Example What are the prerequisites to <class name>? Class name could qualify for

a set of regular expression matching the different ways to type a class name. These templates

could be tied to external resources such as databases containing class schedules etc. This way

the QA system would automatically adjust when these resources are updated.

Another way to make use of question templates is to use them for query expansion.

The ContextQA system could qualify a question to match a query template and derive a list

of alternate way to formulate the same question. Table 7.1 gives an example how the

following question: How do I apply for graduation can be rewritten. The question qualifier

would in this case be the regular expression ^How do I. The text following that prefix would

be considered the question body.

Utilizing query expansion in this way would benefit the ContextQA system because

of the way it stores free form questions in its repository. In question answering systems there

exists a delicate balance weather to expand query terms or refine them.

Expose further query refinement by tying into A.L.I.C.E context terms. This way it

could be translated into what thing that has been associated with it earlier in the discussion.

By rewriting question based on the context of the discussion will increase the illusion of the

system being intelligent.

The system should include better logging mechanisms to be able to perform empirical

studies when running in live environments.

Given that the system already returns a collection of question candidates sorted on

relevance the system could suggest question matches if the confidence level is too low. This

could be done by rewriting the question that scores the highest. Example the following

question: Describe to me how I signup for courses? Might not result in a match that scores

high enough. The highest scoring question could be: How do I register for classes? The

system could then rewrite that question as a suggestion. Do you want to know how you

register for classes? This would be another way to supply a way for continuous discussion.

Another way would be to cluster similar questions that lead to different answers. This way

the system could pose a follow up question when an answer is provided.

89

Table 7.1. Example of Query Template Rephrasing

Can you let me know how I <question body>?

Can you let me know how I can <question body>?

Can you let me know how to <question body>?

Let me know how I <question body>?

Let me know how I can <question body>?

Let me know how to <question body>?

Can you tell me how I <question body>?

Can you tell me how I can <question body>?

Can you tell me how to <question body>?

Tell me how I <question body>?

Tell me how I can <question body>?

Tell me how to <question body>?

Can you describe how I <question body>?

Can you describe how I can <question body>?

Can you describe how to <question body>?

Describe how I <question body>.

Describe how I can <question body>.

Describe how to <question body>.

Do you know how I <question body>?

Do you know how I can <question body>?

Do you know how to <question body>?

How can I <question body>?

How do I <question body>?

How to <question body>?

I need to know how I <question body>.

I need to know how I can <question body>.

I need to know how to <question body>.

90

This could be very interesting because usually a client will continue asking additional

questions covering the same topic as that of the leading question. The system could even

learn from client feedback what follow up questions that are likely to occur. An example

could be a client asking about the price of a product. A common follow up question would be

where to purchase the product.

The ContextQA system would greatly benefit from a question typing algorithm. The

question typing algorithm could be constructed in two parts. One aspect could use common

aspects of question typing usually geared towards factoid type questions. Another question

typing algorithm could be targeted towards the restricted domain that the QA system is being

designed for. I really wanted to include question typing or question classification as it also is

called as part of the ContextQA system. I would expect the reliability to increase even further

if this was added. With the addition of question classification it might prove even more

important to utilize a neural network to determine the importance of a certain algorithm

output. The question typing algorithm should also be running during the collection of new qa

pairs. This way the administrator could apply supervised learning to adjust the automatic

assignment of question types. Jimmy. Lin (J. Lin 2002) shows that when analyzing the types

of questions available in the 2001 TREC competition there are 50 question types that would

cover more than 45% of all the questions. This shows that a question typing algorithm can

efficiently reduce the number of question-answer candidates. Some non-factoid question type

definitions have been defined by Lehnert (1977). Lehnert’s, question type taxonomies would

be likely to fit the FAQ style questions better because they are mostly non factual (see

Table 7.2). The problem is that writing a question classifier for Lehnert’s classes would be

difficult because they require an understanding of the whole concept of a question. Many if

not all features of the question would have to be evaluated to determine the proper class.

Most factual question classifier can focus on factual properties such as time or objects. One

solution to this problem would be to use a subset of Lehnert’s classes that are more easily

determined from a sub-set of question features. These classes could then be used in unison

with a standard set of factoid type classifier to overall improve classifying how and why type

questions.

91

Table 7.2. Conceptual Question Categories with Examples

Question Categories Examples

Causal Antecedent Why did John go to New York?

What resulted in John’s leaving?

Goal Orientation For what purposes did John take the book?

Why did Mary drop the book?

Enablement How was John able to eat?

What did John need to do in order to leave?

Causal Consequent What happened when John left?

What if I don’t leave?

Verification Did John leave?

Did John anything to keep Mary from leaving?

Disjunctive Was John or Mary here?

Is John coming or going?

Instrumental/Procedural How did John go to New York?

What did John use to eat?

Concept Completion What did John eat?

Who gave Mary the book?

When did John leave Paris?

Expectational Why didn’t John go to New York?

Why isn’t John eating?

Judgmental What should John do to keep Mary from leaving?

What should John do now?

Quantification How many people are there?

How ill was John?

Feature Specification What color are John’s eyes?

What breed of dog is Rover?

Request Would you pass the salt?

Can you get me my coat?

92

It would also be interesting to further analyze the additional learning capacity that

translation can have to the existing repository. This was covered to some degree in the thesis

but could be expanded further. Being able to automatically expand the training set is a very

attractive approach.

One final improvement to get better results would be to extend the student advisor

test collection. As described earlier the current test collection is not sufficiently large to

accurately detect small improvements or deficiencies in new algorithms.

93

REFERENCES

Beowulf. (2005). Retrieved October 9, 2005 from http://www.beowulf.org

Bilotti, M., Katz, B., & Lin, J. (2004). What works better for question answering: Stemming
or morphological query expansion? Proceedings of the SIGIR 2004 Workshop

IR4QA: Information Retrieval for Question Answering, Sheffield, England, 25-29
July 2004, pp. 1-7. New York, New York: ACM Press.

Breck, E., Light, M., Mann, G.S., Riloff, E., Brown, B., Anand, P., Rooth, M., & Thelen, M.
(2001). Looking under the hood: Tools for diagnosing your question answering
engine. Proceedings of the 39th Annual Meeting of the Association for Computational

Linguistics (ACL-2001) Workshop on Open-Domain Question Answering, Toulouse,
France, 9-11 July 2001, pp. 1-8. East Stroudsburg, Pennsylvania: The Association for
Computational Linguistics.

Burger, J., Cardie, C., Chaudhri, V., Gaizauskas, R., Harabagiu, S., Israel, D., et al. (2000).
Issues, tasks and program structures to roadmap research in question & answering.
Technical report, National Institute of Standards and Technology. Retrieved Feb 27,
2007 from http://www.inf.ed.ac.uk/teaching/courses/tts/papers/qa_roadmap.pdf

Bush, N. Why you don’t need proprietary bot software. (2001, June). Retrieved April 1, 2007
from http://www.alicebot.org/articles/bush/dontpayalotforthatbot.html

Bush, R. A basic FidoNet(r) technical standard. (1995, September). Pacific Systems Group.
Retrieved June 15, 2005 from http://www.ftsc.org/download/docs/fts-0001.016

Curtis, J., Matthews, G., & Baxter, D. (2005). On the effective use of Cyc in a question
answering system. Proceedings of the IJCAI Workshop on Knowledge and Reasoning

for Answering Questions. Edinburgh, Scotland, July-August 2005. Austin, Texas:
Cycorp.

Diekema, A.R., Yilmazel O., & Liddy, E.D. (2004). Evaluation of restricted domain
question-answering systems. Proceedings of the ACL 2004 Workshop on Question

Answering in Restricted Domains. Barcelona Spain, 25 July 2004, pp. 2-7. Syracuse,
New York: Syracuse University.

Dumais, S., Banko, M., Brill, E., Lin, J., & Ng, A. (2002). Web question answering: Is more
always better? Proceedings of the 25th ACM SIGIR, Tampere Finland, 11-15 August
2002, pp. 291–298. New York, New York: ACM Press.

Experts Exchange. (2005). Retrieved September 4, 2005 from http://www.experts-
exchange.com

Fellbaum, C. (1998). WordNet: An electronic lexical database. Cambridge, Massachusetts:
MIT Press.

Google Answers. (2005). Retrieved June 5, 2005 from http://answers.google.com/answers

94

Green, B.F., Chomsky, C., & Laughery, K. (1961). BASEBALL: An automatic question
answerer. Proceedings of the Western Joint Computer Conference, 9-11 May 1961,
pp. 219-224. New York: Institute of Radio Engineers.

Green, L.E.S., Berkeley, E.C., & Gotlieb, C. (1959, October). Conversation with a computer.
Computers and Automation, 9-11.

Greenwood, M.A., & Gaizauskas, R. (2003). Using a named entity tagger to generalize
surface matching text patterns for question answering. Proceedings of the Workshop

on Natural Language Processing for Question Answering (EACL03), Budapest,
Hungary, 12-17 April 2003, pp. 29-34. Budapest: EACL.

Grosz, B.J. (1983). TEAM: A transportable natural-language interface system. Proceedings
of the first Conference on Applied Natural Language Processing, Santa Monica,
California, 1-3 February 1983, pp 39-45. Morristown, New Jersey: Association for
Computational Linguistics.

Hammond, K., Burke, R., Martin, C., & Lytinen, S. (1995). FAQ Finder: a case-based
approach to knowledge navigation. Proceedings of the 11th Conference on Artificial
Intelligence for Applications, 20-23 February 1995, pp. 80-86. Washington DC,
Virginia: IEEE Computer Society Press.

Harlen, W. (2004, May). Evaluating inquiry-based science developments. University of
Cambridge.

Hirschman, L., & Gaizauskas, R. (2001). Natural language question answering: The view
from here. Journal of Natural Language Engineering, Special Issue on Question
Answering, 7, (4), 275-300, October.

Hung, J.C., Wang, C.S., Yang, C.Y., Chiu M.S., & Yee, G. (2005). Applying word sense
disambiguation to question answering system for e-learning. Proceedings of the 19th
International Conference on Advanced Information Networking and Applications

(AINA, 2005), Tamkang, Taiwan, 28-30 March 2005, pp. 157-162. Washington DC:
IEEE Computer Society.

Java Open Source Spell Checker. (2006). Retrieved Tue 29, 2006 from
http://jazzy.sourceforge.net

Java Servlet Technologies. (2006). Retrieved Aug 8, 2006 from
http://java.sun.com/products/jsp/jsp_jservlet.ds.html

Kantor, B., & Lapsley, P. (1986, February). Network news transfer protocol---a proposed
standard for the stream-based transmission of news. Retrieved March 2004 from
ftp://ftp.rfc-editor.org/in-notes/rfc977.txt

Katz, B. (1997). Annotating the world wide web using natural language. Proceedings of the
5th RIAO Conference on Computer Assisted Information Searching on the Internet

(RIAO 1997), Montreal, Canada, 25-27 June 1997, pp. 136-155. Cambridge,
Massachusetts: MIT Press.

Kukich, K. (2000). Beyond automated essay scoring. Institute for Electrical and Electronic
Engineers (IEEE) Intelligent Systems, 15, (5), 22-27, October.

95

Lancaster, F.W. (1968). Information retrieval systems: characteristics, testing, and
evaluation. New York: John Wiley & Sons.

Lehnert, W.G. (1977). A conceptual theory of question answering. Proceedings of the fifth
International Joint Conference on Artificial Intelligence, Cambridge, Massachusetts,
22-25 August 1977, pp. 158-164. San Francisco, California: Morgan Kaufmann
Publishers.

Lehnert, W.G., Dyer, M.G., Johnson, P.N., Yang, C.J., & Harley, S. (1983). Boris: an
experiment in in-depth understanding of narratives. Artificial Intelligence, 20, (1):15-
62.

Lenat, D. (1995). CYC: A large-scale investment in knowledge infrastructure.
Communications of the ACM, 38, (11), 33–38.

Lin, J., Quan, D., Sinha, V., Bakshi, K., Huynh, D., Katz, B., & Karger, D.R. (2003). What
makes a good answer? the role of context in question answering. Proceedings of the
Ninth IFIP TC13 International Conference on Human-Computer Interaction

(INTERACT2003), Zürich, Switzerland, 1-5 September 2003. The Netherlands,
Amsterdam: IOS Press.

Lovins, J.B. (1968). Development of a stemming algorithm. Mechanical Translation and

Computational Linguistics, 11, 22-31, March 1.

Moldovan, D., Harabagiu, S., Girju, R., Morarescu, P., Lacatusu, F., Novischi, A.,
Badulescu, A., & Bolohan, O. (2002). LCC Tools for question answering.
Proceedings of the TREC-2002 Conference, NIST, Gaithersburg, Maryland, 19-22
November 2002, pp. 144-154. Washington DC, Virginia: Department of Commerce.

Moldovan, D., Pasca, M., Harabagiu, S., & Surdeanu, M. (2002). Performance issues and
error analysis in an open-domain question answering system. Proceedings of the 40th
Annual Meeting of the Association for Computational Linguistics (ACL-2002),

Philadelphia, Pennsylvania, 6-12 July 2002, pp. 33-40. New York, New York: ACM
Press.

Morton, T.S. (1999). Using coreference for question answering. Proceedings of the
Workshop 'Coreference and Its Application' (ACL-1999), Baltimore, Maryland, 21
June 1999. Maryland: ACL.

Porter, M.F. (1980). An algorithm for suffix stripping. Program, 14, (3), 130-137, July.

Prager, J., Brown, E., Coden, A., & Radev, D. (2000). Question-answering by predictive
annotation. Proceedings of the Twenty-Third Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval, Athens, Greece,
24-28 July 2000, pp. 184-191. New York, New York: ACM Press.

Radev, D.R., Libner, K., & Fan, W. (2002). Getting answers to natural language queries on
the web. Journal of the American Society for Information Science and Technology,
53, (5), 359-364.

Radev, D.R., Qi, H., Wu, H., & Fan, W. (2002). Evaluating web-based question answering
systems. Proceedings of LREC, Las Palmas, Spain, 29-31 May 2002. Luxembourg:
ELRA.

96

Salton, G., & Buckley, C. (1988). Term-weighting approaches in automatic text retrieval.
Information Processing & Management, 24, (5), 513–523.

Salton, G., & McGill, M.J. (1983). Introduction to modern information retrieval. New York:
McGraw Hill.

Schank, R.C., Goldman, N.M., Riesbeck, C.K., & Rieger, C.J. (1975). Inference and
paraphrase by computer. Journal of the ACM, 22, (3), 309-328, July.

Sneiders, E. (1999). Automated FAQ answering: continued experience with shallow
language understanding. Proceedings of the 1999 AAAI Fall Symposium on Question
Answering Systems, North Falmouth, Massachusetts, 5-7 November 1999, pp. 97-
107. Menlo Park, California: AAAI Press.

Stop Word List. (2006). Retrieved Aug 15, 2006 from
http://www.dcs.gla.ac.uk/idom/ir_resources/linguistic_utils/stop_words

SUN N1 Grid Engine. (2005). Retrieved October 9, 2005 from
http://www.sun.com/software/gridware/

Tellex, S., Katz, B., Lin, J., Fernandes, A., & Marton, G. (2003). Quantitative evaluation of
passage retrieval algorithms for question answering. Proceedings of the 26th Annual
International ACM SIGIR Conference on Research and Development in Informaion

Retrieval, Toronto, Canada, 28 July – 1 August 2003, pp. 41-47. New York, New
York: ACM Press.

Turing, A.M. (1950). Computing machinery and intelligence. Mind, 59, 433-460.

Van Rijsbergen, C.J. (1979). Information retrieval. London: Butterworths-Heinmann
Newton.

Voorhees, E.M. (1999). Overview of the eighth text retrieval conference (TREC-8).
Proceedings of the Eighth Text Retrieval Conference, Gaithersburg, Maryland, 17-19
November 1999, pp. 1-24. Washington DC, Virginia: Department of Commerce.

Voorhees, E.M. (2003). Overview of the TREC 2003 question answering track. Proceedings
of the Twelfth Text REtrieval Conference. Gaithersburg Maryland, 19-22 November
2003, pp. 54-68. Washington DC, Virginia: Department of Commerce.

Voorhees, E.M. (2004). Overview of the TREC 2004 question answering track. Proceedings
of the Thirteenth Text REtrieval Conference, Gaithersburg Maryland, 16-19
November 2004, pp. 12-20. Washington DC, Virginia: Department of Commerce.

Weizenbaum, J. (1966). Eliza: A computer program for the study of natural language
communication between man and machine. Communications of the ACM, 9, (1), 36-
45.

Whitehead, S.D. (1995). Auto-faq: An experiment in cyberspace leveraging. Computer
Networks and ISDN Systems, 28, (1-2), 137-146, December.

Woods, W.A. (1973). Progress in natural language understanding: An application to lunar
geology. Proceedings of the AFIPS Conference, New York, New York, 4-8 June
1973, pp. 441-450. Montvale, New Jersey: AFIPS Press.

97

Word List. (2006). Retrieved Aug 03, 2006 from http://wordlist.sourceforge.net/

Zaanen, M., Pizzato, L.A., & Moll´a, D. (2005). Classifying sentences using induced
structure. Proceedings of the 12th International Converence for String Processing
and Information Retrieval, Buenos Aires, Argentina, 2-4 November 2005, pp. 139-
150. Heidelberg, Germany: Springer-Verlag.

Zweigenbaum, P. (2003). Question answering in biomedicine. Proceedings of the EACL2003
workshop on NLP for Question Answering, Budapest, Hungary, 12-17 April 2003, pp.
41-61. Cambridge, Massachusetts: MIT Press.

98

APPENDIX A

TECHNICAL SPECIFICATIONS

99

TECHNICAL SPECIFICATIONS

This section describes the technical details of the system hardware used during the

development of the ContextQA system. This section also describes the software used to run

the ContextQA system, and software used during development.

HARDWARE

Hardware Specifications

OS Windows XP

CPU AMD Athlon 1.25 Ghz

Memory 1.0 GB of PC2100 DDR DRAM

Storage 2 Maxtor 20GB configured in RAID-0

SOFTWARE

Software Specifications

Database MySQL-Server 5.0

The database contains 1091 questions and 756 answers.

JVM Java J2SDK 1.6

Webserver Apache Tomcat 6.0

IDE Eclipse 3.1, and TogetherJ 3.0

Editor UltraEdit 13.0

3
rd

 party software Alicebot Program D, WordNet 2.0, Jazzy 1.0

100

APPENDIX B

QA ADMINISTRATION INTERFACE

101

MAIN INTERFACE

In the main interface you are presented with two different sections which are

described below.

Create New Question

The first section is designed to add additional question-answer pairs to the knowledge

base. Two text fields are available, question and answer. If both fields are filled out and the

“Create” button is clicked the new qa-pair will be inserted into the knowledge base if the

question does not already exist.

Search for Questions

The second section presents a search field, and a table listing questions. Initially the

search field is blank. This results in all questions being presented in the table. Any search

terms entered in the search field will result in a Boolean or-condition search. If you search on

“A B” the result will be A OR B. Any questions containing either A or B or both will show

up in the list. The table has seven columns. Each of the columns is described below:

102

Main Search Result Table

Edit This button will cause a popup window to appear where the question

and its associated answer can be edited. See the edit question

interface section for additional details.

Q-ID This is the question ID as it is represented in the QA database.

QUESTION This is the question sentence.

A-ID This is the answer ID as it is represented in the QA database.

#Q/A This column represents the number of questions that are linked to

the same answer as the question presented in the table row. If this

column lists only one, it means that this is the only question that

leads to that answer. The higher the number the better. A high

number means that several differently formulated questions are

pointing to the same answer. Many auxiliary questions per answer

will improve the QA systems matching performance.

CREATED This is the date when the question was created. The date is formatted

using the ISO date standard (yyyy-mm-dd).

UPDATED This is the date when the question was updated. The date is

formatted using the ISO date standard (yyyy-mm-dd). If the

question has never been updated this field will be blank.

EDIT QUESTION INTERFACE

When a question is selected to be edited in the main interface a popup window

appears. The popup window has several sections which are each described in detail below.

Question / Answer

The question with its associated answer is presented as editable text fields. The question field

has the following buttons:

103

Question Controls

Save Will save the current state of the question, close the popup window,

and bring the user back to the main interface.

Re-link Option to link the question to a different answer

This is done by providing a page where all available answers are

listed. If a new answer is selected the current answer might end up

being deleted if no other questions are associated to that answer.

Delete Will delete question and possibly also the answer if no other

questions are associated to that answer.

The answer text field also has a set of buttons:

Answer Controls

Save Will save the current state of the answer, close the popup window,

and bring the user back to the main interface.

Close Will close the popup window, and bring the user back to the main

interface.

The answer also has a check box which indicates whether or not the answer has been verified
for correctness or not.

Create an Additional Question

This section includes a field where an additional question can be typed in. If this

question is submitted, it is linked to the answer that is currently being displayed.

Questions Linked to the Same Answer

This section presents a table that lists any other questions that are linked to the current

answer. If there are no other questions linked to the current answer this table will be blank.

This table also includes edit buttons for each line item, which would bring up the edit

question interface for that particular question.

104

Similar Questions

The similar questions section includes a table which lists questions that are similar to

the question currently being edited. The questions listed in this table are not linked to the

current answer. Each line item has a link button which will re-link that particular question to

the current answer. Each table row will also include a column that indicates weather the

answer that particular question points to have been verified or not. Re-linking questions that

point to verified answers are not recommended unless the question is being re-linked to

another answer that also has been verified.

105

APPENDIX C

TEST QUESTIONS

106

QA TEST QUESTIONS

The following table lists an excerpt of questions used when testing the different QA

Agents listed in section Agent Results. Each row has an associated answer ID or a negative

one if no answer exists in the knowledge repository. These questions were extracted from

various websites to ensure that they are separate from any data the system has previously

been tested on.

Test Questions with Associated Answer ID’s

Question Answer ID

Do you offer financial support? 133

How important is where the student received his bachelor's degree? -1

How long will a BS take? 148

What is your minimum GRE requirements? 45

How do I find out if I am meeting your requirements? -1

What kind of job do I get if I study computer science? 947

Does the College assist me in finding a job? 393

Do you offer a computer repair class? -1

Do you offer classes online? 1017

Do you offer classes that corresponds to some industry certificates? -1

When do classes start? 1018

Which are the requirements for foreign students? -1

What is the student visa procedure? 306

How much do i have to spend per month for accommodation and living

expenses?

-1

How do I get into the lab? 609

Who is this program for? 780

How long will it take me to complete the degree? 148

How much does the program cost? 592

Do I have to take the GRE? 43

ABSTRACT OF THE THESIS

ContextQA: Experiments in Interactive Restricted-Domain Question Answering
by

Martin Erik Liljenback
Master of Science in Computer Science
San Diego State University, 2007

The need for more advanced data mining and search engine technologies has been

steadily increasing since the introduction of the Internet. With the exponential growth of
information available on the web combined with a public that is becoming more educated in
search technology, there exists a great need to quickly and efficiently be able to provide results
for a large range of very specific questions. The current natural language processing is still in a
primitive state. There is no single solution that will be able to provide quality results to the broad
range of potential questions by using indexed data extracted from the web. However there exist
several ways to provide more efficient results. One way is to develop more extensive ways to
interact with users to target results related to the individual’s specific needs.

This thesis focuses on a particular field of research that is called Question Answering
Systems. In Question Answering the system provide answers on plain text questions through
natural language processing, information retrieval, and data mining on structured or unstructured
text data. A summary of the research development in this area is provided and also a description
of how the algorithms and techniques have evolved over time until we are left in the current
state.

Furthermore, I conclude that there are many compelling reasons to build more refined
and targeted knowledge bases. With a targeted knowledgebase and knowledge about an
individual specific needs, several algorithms can be applied which provides better results and
efficiency than that of an open-domain question answering system. I show that index based
search engines are far from providing the same level of accuracy as a restricted-domain QA
systems. As part of the thesis a complete restricted-domain QA system is developed named
ContextQA. A series of experiments are conducted where ContextQA is configured to use
different approaches on restricted-domain question answering algorithms. The results show that
high accuracy can be obtained within a restricted-domain with limited resources.

